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ABSTRACT

Fixed configuration filter theory provides a methodology for designing

filters of reduced complexity which will provide suboptima l performance in

general, an d opti mal performance un der cer ta i n con d i tions . In this  re por t

we derive fixed configuration reduced order filters for continuous and dis-

crete t ime systems , with and without state dependent noise.
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FIXED CONFIGURATION REDUCED ORDER FILTERS

I. INTRODUCTION

Fixed configuration fi l ter theory provides a methodology for designing

fil ters of reduced complexity which will provide near optimal performance.

Sometimes the performance i s opt imal , although the filter structure is sim-

plified. The simplification is achieved by specifying the filter structure

a priori , and then optimizing the free parameters of the filter. The advan-

tage of such a fi l ter over an optimal l i nea r  Ka l ma n f i l t e r  is that  far fewer

on-line calculations are necessary . This is desira b le for many appl ica t ions

where the computational facilities are limited and/or the state vector is so

large that it is not feasible to perform all the on-line calculations required

for Kalma n filterin g. Such situations are common Air Force problems .

The fixed configuration filter discussed in this report is referred to

as a reduced order filter. It has applications in several areas. One appar-

ent area of usefulness occurs in aided navigation systems such as loran-iner-

tial or doppler-inertial-loran systems . Another area of application is point-

in g and tracking problems . The criterion for applicability of reduced order

fil tering is to have a relatively high order system with interest in estimat-

ing only some of the state variables . Th i s i s often the case when many of

the state variables occur due to a detailed model of the noise processes in

the system . Here , the interest is not to estimate the noise state variables ,

but only their effect on the variables of concern , suc h as pos i t ion and veloc-

i ty. 

~~~~~~~ -~~~~ .‘- 
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Much of the previous work in fixed configuration filtering has suffered

from a rather important factor. Al though the on-line computational require-

ments were s i gni f i can tly reduce d , the off—line computation of the optima l

fi l ter parameters was difficult. Sometimes the situation was handled by

solvin g a difficult nonlinear two-point boundary-value problem (TPBVP) [1].

In other cases , filter parameters were not truly optimized , but only opt imized

with regard to the following stage of estimation , [2]. In the work presented

here we cont inue to investigate reduced order fi l tering problems with the

same general context set forth in [3]. The solutions obtained are basically

of two types :

1. Truly optima l solutions where the TPBVP reduced to a single-point

boundary-value problem.

2. Suboptimal or partially optimized solutions where only a linear

TPBVP must be solved .

Both of the above mentioned solution categories have the property that

the amount of off-line computation required is predictable and reasonable.

Th is fact makes the methodology we are suggesting feasible in that the reduced

order filtering problems can be solved with a realistic amount of off-line

computa t i on , wh ile the on-line computational savings could be enormous.

The ma in contributions of this research are presented in the first four

papers appearing in the Appendix. The first two papers d~~l wi th  con ti nuous

time problems . The first paper is entitled “Reduced Order Modeling. ” It has

been submitted to the IEEE Transactions on Automatic Contro’ as a short paper.

The second paper is entitled “Reduced Order Filtering with State Dependent

Noise. ” It has beeen submitted to the 1978 Joint Automatic Control Confer-

ence , and will also be reviewed for the IEEE Transactions on Automatic

Control . 
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The th i rd an d fourth papers are di scre te t ime vers ions of the reduce d

order filtering problems . These are draft copies , not presently in the final

form for submiss ion to appropriate journals. The titles are “Linear Discrete

Reduced Order Filtering, ” and “Discrete Reduced Order Filtering with State

Dependent Noise. ” The di screte prob l ems are di s t inct l y di fferen t from the

continuous problems , and represent nontrivial extensions . Perhaps this fact

is one of the more im por tant f i n di n gs of the research . The f i fth pa per i n

Appendix A is not pertinent to this research , b ut was performed d ur ing  the

duration of this grant.

The details of the research are to be found in the papers in the Appendix.

A discussion of the papers and an overview of the research findings are pre-

sented in the following sections of this report. The work presented herein is

a con tinua t ion  of an i nvest igat ion which  began in the s ummer of 1976 wh i le the

principal investigator participated in the USAF/ASEE sponsored summer facul ty

research program a t the Frank 3. Seller Researc h La boratory.

I I . DISCUSSION

a) Reduce d Order Modeling

The paper “Re duce d Or der Model in g” presents a method for model i n g a

l inear stochastic system of high order , us in g a reduce d order model . The

problem is formulated as follows . Given a linear stochastic model

~ (t) A( t) x(t) + w (t) (1)

w it h out put

y(t) = C(t) x(t) (2)

where w(t) is zero mean wh i te noise , find a reduced order model

-

~

-—
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(t) = F(t) (t) + K (t) w(t) (3)

which approximates (1) and (2). The error criterion is quadratic

J = E {Jf eT (t) R(t) e(t) dt + eT (tf) S e ( tf)} (4)

to

where e is the equa tion error

e~~~y - ~~ (5)

Th is problem was motivated by the work of Obinata and Inooka [4], but uses

much the same mathematics as that in [3]. It is really a model matching

problem , but may be regarded as a peculiar kind of reduced order fi l tering

p roblem where on e onl y measu res the in p u t no i se , and there are no noisy

observations of the state vector.

The opt imal resul ts for this  paper are character i zed by a s i ngular  arc

wh ich exists w~cn the matrices F(t) and K(t), and the vector of in i t i al

conditions , .~(t0) are selected appropriately. The correct choice of the

ma trices is ex tremel y s imp l e when i t can be done , but general ly  the alge bra

w ill not have a solution. In this case a suboptima l approach is suggested

where F(t) is selected a priori and only K(t) and y(t0) are optimized .

The solu tion is obtained as a single-point boundary-value problem .

The value of y (t 0) in this paper was not constra i ned a priori so that

y (t) would be an unbiased estima te of y (t) for t > t 0. It was obtaine d via

application of the generalized boundary condition [5] from the calculus of

varia tions. When the optima l choice for F (t) could be obtained , this

app roach le d to the same resul t  as an un bi ase d cons tra i n t. We ob ta i ne d the

very important result that when F(t) is not selected optimally, it is better

to select y(t0) in such a way that y(t) is a biased estimate of y(t).
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That is , the qua dra ti c performance measure wi l l  be smal le r  i f th i s is done .

At th is point it appears that the same remark will hold true in the other

fi l tering problem which we have solved with the unbiased constraint applied

prior to optimization . This may be an important property pertinent to the

reduced order area , however we have not gone through the mathematics to

generalize the result yet.

b) Reduced Order Filtering with State Dependent Noise

Th is paper represents an extension of the basic theory set forth in [3]

to systems with state dependent noise as described by stochastic equations of

the form

dx (t) = A (t) x (t) d t + dw (t) + ~ [x~ (t) - ~i (t)] G1 ( t )  dv (t)
i=1 (6)

where the disturbances are zero mean incremental wiener processes and p (t) is

the mean va lue  of the state vector. The observat i on vector is also corru pted

by state depen dent no i se . It is of the form

dy ( t )  = dv (t) + C (t) x.(t) d t +~~~~~ [x 1 (t) - ~ 
(t)] M1 (t) d v (7)

A fil ter is to be designed to estimate a l ower order vector

z(t) N(t) x (t) (8)

The fi l ter is of the form

dz(t) = [F(t) z(t) + g (t)j dt + K(t) dy(t) (9)

and the estimate of z is required to be unbiased . We select g (t) and z (t0)

to meet the unb iased requirement , and then optimize the choice of F(t) and

K(t) with respect to the quadratic performance criterion
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J = E {f~e
T (t) ~e(t) dt + eT (tf) Se( tf) 

) (10)

H The solut ion proceeds along the same lines as that obtained in [3], with

di fferent equations resulting from the state dependent noise. There is an

interes ting interpretation to the result obtained when

~~ ~xx .. 
( t ) G

~ (t) ~
M~ (t) = o (11)

i=1
j=1 

.

where is the covar i ance mat r ix  assoc iate d w it h ‘~~ . The solut i on is the same

as that obtained in [3], but with R , the covar iance matrix associated with v

re p laced by R + an d Q, the p lan t no i se covar i ance mat r ix  re p lace d by Q +

where

n T
‘1’i ~~- 

~ ~xx~ 
G. EG~ (12)

i=1 13

and

P3 
~~~~ 

M~ M~ (13)

The analo gy could be carried further , without requiring (11), if w an d v

were al lowe d to have non zero cross corre la t ion .  There are some interes ti ng

aspects to what we have said here . As an example, one may have mean i n gful

problems with state dependent noise when R = o. Such problems would not be

well posed without state dependent noise. It is remarkable , considering the

complexity of problems involving state dependent noise , that t he resul ts

obtained in [3] could be extended to this class of problen .s with such minor

modi f i cations . 
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c) Linear Discrete Reduced Order Filtering

In the proposa l , it was s tate d tha t the research area woul d be pursue d

to some extent within a discrete framework. This was motivated by the fact

that the discrete format would make it easy to evaluate the amount of on-line

calcula tion required by the reduced order filters. What we found was that

the character of the discrete problem was considerably different than that

of the continuous time problem , and that the ex tens ion of the results was

not a tr i v ial exercise . The ma in reason for the d i fference is t hat matrices

which occur only linearly in the continuous problem occur quadratically in

the discrete problem .

The discrete problem is formulated using the dynamical model

x~~~1 
= A. x. + w~ ; j = o, 1, ... (14)

w i th observat ion model

y . = C . x . + v ; j = 1, 2 , ... (15)
j+ 1 j~~1 j+ 1 3+1

where w~ an d v~ are zero mean white noise sequences . A l ower order linear

trans format i on of the state vector

z~ ~~~ x~ (16)

is to be estimated by the linear fi l ter

z. = F z + K . y + g. (17)
3~~1 j j 3 j+ 1 3 H

The deterministic vector sequence , q., and the fi l ter initial condition , z ,

are to be selecte d so that z . is an un biased estimate of z.. The matrix
3 3

se quences , F . an d K~ are then chosen to mi n i mize a qua dra ti c performance

measure i n the error

---- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ,.- --.- .. —-~~ 
.. .— -.-
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e. Az. - z . (18)3 _ 3  3

The performance measure i s

M-1 1 T
J = E {~~ e

3 
U. e. + eM S e M } (19)

j=o

A general TPBVP is specified , w hose solu ti on gi ves the require d sequence of

matrices , F~ and K
3
. The interesting feature of the problem that differen-

tiates it from the continuous time problem , is that the matrices F. and K.
3 3

both appear quadratically in the Hamiltonian. The singular optimization

problem is therefore not present in the discrete case . This has both good

and bad aspects . The good feature is that one does not have to go through

the excessively tedious mathematics of deriving conditions for a singular arc .

The bad part is tha t it i s not ob v i ous how one shoul d p rocee d to solv e the

TPBVP .

The way that the TPBVP simplifies is interesting, and closely rela ted

to the unb iase d requirement. To sa t isfy the unbiase d requi rement , it is

necessary to se lect

g. = G . ~~~. (20)
3 3 3

where ~~~~ 
= E {x. } and where

G .A ( N .  - K. C. ) A .  - F. N (21)
3— j+ 1 3 j+ 1 3 3 3

It turns out that if one can make G. = o by selecting F appropriately, then
3 3

the TPBVP simplifies and becomes a single-point boundary—value problem. It

is not always possible to find an F . that makes G~ equal to zero howeve r.

For this reason the problem is considered where only K. is optimized over the

entire interval , and F. is selected prior to optimization , perhaps according

to a one-stage optimization procedure [2]. The important aspect of the 

-~~~~--~~~~ - - - -
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result under these circumstances is that one only has to solve a linear TPBVP.

Such problems can be solved using invariant imbedding techniques with the

method leading to a discrete Riccati equation . Some effort was spent on a

computer program using this approach during the course of this research.

The author feels that the discrete problem and its solution represent a sig-

nificant aspect of the research performed during the period of this

grant.

d) Discrete Reduced Order Filtering with State Dependent Noise

In view of w h at was done in the case of continuous t ime systems , a

natural extension of the preceding paper is to consider the case of state

dependent noise. The dynamical model considered is of the form

x( j+1) = A (j) x(j) + w(j) +
j
~~ 

~ 
( i )  t~ (~~

) f l (~~~) 
(22)

where w(j) and ~(j) are zero mean discrete wh i te noise vectors . The obser-

vation model is of the form

n
y (j + 1) = C (j + 1) x (j + 1) + v (j + 1) +

~~~~~ ~~~
. (j) M~ (j) ~(i) (23)

i=1 1

where v (j + 1) is the zero mean discrete white measurement noise that is addi-

tive . In (22) and (23), the terms x~ C i)  are defined as x. (j) - E i
~
x
~ ~~ ) ~~

We note tha t of ten measuremen ts of the fo rm

y(j+1) = C (j+1 ) x(j+1) + v(j + 1) +
~~~~~ ~i (j+i) M~ (j+1)c (j+1 )
i=1 1

(24)

can be put in the required form (23), w here ~ represents a disturbance infl u-

encing the observation in a multipli cative way . Hence we do not view the

form of (23) as overly restrictive . The ability to treat nonadditive noise

si tuations is a useful addition to the research findings . It enables one to
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treat problems where the measurement is either present or absent in a random

way , as is exemplified by the inertial example problem considered in the

paper.

Just as in the continuous time problem , the results carried over with

only minor modification to the case with state dependent noise , i.e. algorithms

were developed for desi qnin q filters of the form

z (j + 1 ) = F (j) ~ (j) + K (j) y (i +1) + g(j) (25)

where z (j) is a reduced order estimate for z (j) = N (j) x (j). These algo-

rithms differ in relatively minor ways from those developed without state

dependent noise.

All of the papers discussed in this section and presented in the appendix

deal with different aspects of reduced order fi l tering and signal processing.

In all cases we have ha d as a goal, the idea of avoiding unrealistic off-line

computat ion , e.g.- high order matrix valued non—linear TPBVP ’s. It is the

author ’s opinion that the results are practical in the sense that the off-line

computation is feasible , and the on-line computational savings may be tremen-

dously important in a system where estimates must be available in a limited

time frame , and the dynamical system is of high dimension.

III. OTHER TOPICS

The most important aspects of the research , in the author ’s opinion , have

been set forth in the publications which have been discussed. There are some

other topics that we feel are worth mentioning however , an d these are discussed

in this section.

a) Steady State Results

Consider the steady state or stationary version of the problem considered

in [3]. We assume that there is a model such as described by (1) but with
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constant A matrix and stationary noise w. The observation model is

y(t) = Cx (t) + v(t) (26)

where v (t) is zero mean stationary wh i te noise. The vector to be estimated

is

z ( t) = N x ( t ) (27)

and the fi l ter is a reduced order filter , not time variable,

z(t) = Fz (t) + Ky(t) (28)

The optimal matr ices F and K are to be found so that the performance measure

J = E{ e T (t) U e (t)} (29)

is minimized , where e A z  - z.

The problem is basically a calculus problem , that can be stated as

follows . Find the matrices F and K to minimize

J = tr{UP ee } (30)

where

~ee ~ 
E ( e Ct ) e

T 
(t) } (31)

satisfies

o = BP + FP + P FT + P B T 
+ N Q N T 

+ K R K T (32)

In (32) B is defined as

B~~(NA - FN - KC) (33) 

_ - _ ---~~~~~~~~~~~~~~~~~~~~ --. - - --- ----~~~- _ -
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and Q is the covariance matrix associated with w while R is the covariance

matrix associated with v. The matrix P
~

, is defined as
C.

= = E { xe T } (34)xe ex

and satisfies the requirement

o = A P xe + 

~xx 
BT + Pxe FT + Q N T ( 35)

where P is the second moment matrixxx

= E { x x T } (36)

wh ich may be regarded as known , and satisfies the constraint

O = A P xx + P xx AT + Q  (37)

We note that there are stability requirements which must be met before these

equations are applicable.

Au gmenting the cost function with the constraints (32), (35), and the

transpose of (35), we have

= tr { U 
~ee 

+ [B 
~xe + F 

~ee 
+ 

~ee 
FT + 

~ex B
T 

+ N Q NT + K R KT ] A

+ [ A P  + P BT + P FT + QN T ] A T + [p AT + BP + FP ( 38)xe xx xe xe ex xx ex

+ N Q ] A
~ X ~

Takinq the qradients of J* wi th respect to P and P setting them equal toxe ee
zero gi ves the eq ua t ions for the Lagran ge mul tipliers

o = U + F T A + A  F (39)ee ee
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o = A A + A F + B
T

A (40)
xe xe ee

We no te tha t A = A
T 

. Setting the gradient with respect to K equal to
ex xe -

zero gi ves

K = [P + A  A P ] CT R-l (41)
ex ee ex xx

Since F appears linearl y in the Ham i lton ian , it is a bit troublesome . Taking

the gradient of J* with respect to F and setting it equal to zero gives the

requirement that

0 A (P - NP ) A + (P - NP ) t~ = o (4 2)
— ee xe ee ex xx xe

It can be seen that e will be zero if A is zero and P - NP = o.xe ee xe
We w ill s how tha t if F can be found so that B i s zero , i.e.

N A - F N - K C = o  (43)

and the required F is nons ingular , then o will equal zero when K is selected

op timally . When B = 0 , (40) is solved by A xe 
= o. Subtracting (35)premulti-

plied by N from (32 ) gives

~ ee 
- NP ) FT + FP ee - N A P xe + K R K T = (44)

Substituting from (43) into (44) we obtain

o = (P - NP ) FT + F ( P  - NP ) + K [ R K T 
- CP  ] (45)

ee xe ee xe xe

The last term is zero when K is optimal , as can be seen from (41) when A xe = O~~

Hence when F is nonsingular , (15) implies that

~ee 
= N 

~xe (46)

k 
__________________ _ _ _ _ _  

j
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and consequently, 0 is zero . When a solution to (43) can be found it is of

the form

F = [NA - KC]N ’
~ + r [I - NN~~] (47)

where r is arb itrary and t indicates the pseudo inverse.

We have presented the equations which must be solved for an optima l F;

however , it should be noted that both F and A must have all eigenva lues with

negative real parts for the solution to he applicable. The steady state

value of ~~, the expected value of the state must be zero therefore ; and con-

sequen tly, the required fi l ter is of the form indicated by (28), w i th no

bias removing function , g(t).

It is clear that (43) cannot always be solved , and we , therefore , look

at the problem with specific values of F. If F is picked a priori , then we

may solve the algebraic equations (37) and (39) for 
~xx and Aee~ 

and hence

these are regarded as known quantities . The remainder of the problem only

involves linear al gebra . We illustrate this by example. Suppose F , U , and

are matr i ces of the form

F = f I

U u 1 (48)

A = A  Iee ee

where f , u , and Aee are scalars . Then (35) and (40), after substituting

from (41) can be evaluated as

G12 ~xe = - (49)

G
21 

G22 A xe 

~~~~~~~~~~~~~~ --~~~~~~-~~ 
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where

G A A + F - P C T R
1
C11~~ xx

-1 i -1
G12 A -A ee ~~ C R C

G21 ~ 
Aee C

T R 1 C

T T -1 (50)
G22 A - [A + F - C R C P~~.]

A P~~ [NA - FN] T 
+ Q N T

D2 A -  [ N A - F N ] T 
Aee

At this point , the gain K can be evaluated by substituting the solution to

(49) in (41). We note that if the solution is to be valid , then all of the

ei genvalues of the matrix

A 0
_________ 

(51)

B F

must have negative real parts . The author would like to point out that the

ma tter of a computa tion al sea rch for a value of F that wil l  lea d to goo d

performance when used in conjunction with the above equations , appears to be

complicated by the fact that the matrix (51) must be checked for stability at

each stage to insure that the equations are meaningful

In summa ry, reaarding the steady state problem , one mus t be aware that

a solution to the reduced order problem may not be possible , even when a

solution for the corresponding finite interva l problem is available.
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b) Computational Savings

In this section a few remarks are made about on-line computational sav-

ing, because this is the factor that motiva tes the work . A reduced order

filter of dimension ~ of the form indicated by (17), with an observat ion of

di mens i on m requires

~. (~ 
+ m) multipl ies

and

+ m - 1) adds

for each on-line filter update . A Kalman fil ter of di mens i on n woul d require

n (n + m) multiplies

n ( n + m -  2) adds

for each on—line filter update , assumin g tha t all the necessar y filter param-

eter were stored . The savings in cal culations are significa nt when the reduced

order filter is used ; for example, if a filter of dimension 2 is used to

estimate 2 state va~iab les of a 10th order system , and onl y a scalar observa-

tion is available , then only 5?’ of the calcula ti ons of a Kalman fi lter are

needed per update. Of course , th i s difference woul d be even more impress i ve

i f n were greater than 10. Performance of a reduced order fi l ter may be

very good as indicated by the example in [3] (JACC version), and the off line

computation , though it may be extensive , definitely is feasible.

IV . AREAS OF FUTURE RESEARCH

A number of interesting subjects have come forth during the course of

this research and have not been properly resolved at this stage . We will
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mention them briefly in this section . One of the basic issues that we have

not confronte d i s “how does one find an optimal solution when it is not pos-

sible to find an F mat rix that maintains a sin gular arc?” We have chosen to

look at suboptima l solutions in this case , rather than dealing with this

centra l issue . Another point of interest is with regard to the control of

stochastic systems . It is of interest to know how well a controller would

perform if the control were required to be the output of a reduced order

filter, designed according to the procedures we have presented here , as

opposed to those in [6].

The reduced order modeling problem introduced a novel aspect to the work ,

i.e. can we do better than we have been doing with respect to minimizing a

quadratic error criterion , if we drop the requirement that the estimate be

unbiased? Based on the reduced order modeling paper in the appendix , it

appears that the answer is yes when F is selected a priori .

We have seen tha t the steady state sol-it ion to the problems we have con-

si dered does not exist when A is an unstable matrix, since this would imply

that 
~xx was unboun ded , and (37) would not apply of course. Another area

that we must look i nto i s the con diti ons for exis tence of the solut i ons of the

linear two—point boundary value problems that we have derived in this research.

V. SUMMARY AND CONCLUSIONS

Significant progress has been made during the course of this research in

severa l areas which we had sought to investigate at the onset of this project.

We have looked at both continuous and discrete problems , with both additive

and state dependent noise in each case. It has become clear that the discrete

problems are quite different than the continuous time problems , primarily

becau se of the quadra tic occurrence of the F matr i x in the d i screte time
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problems , while the corresponding matrix occurs only linearl y in the contin-

uous time p roblem . giving rise to a singular solution. It would be interest-

ing to take the limit of the discrete solution as the sampling interva l goes

to zero to obtain the continuous time solution [7], to clarify the relation-

sh ip between the two kinds of problems .

The au thor feels tha t the “specified F” solution obtained in this research

are of considerable practical importance in the design of reduced order fi l-

ters . The reason that they are important is that they maintain the TPBVP

nature of the reduced order filtering problem , so that optimization looks

beyond one stage ahead, however the TPBVP is linear. It is linear even in

the case of hav i ng state dependent no i se! The solut i on , when i t exis ts , can

therefore be obtained off line in a predictable number of steps. This is

unl ik e the case of nonl i near TPBVP’ s which are generally solved by quasi-

linearization or some such method , and which may or may not converge , and may

be very sensitive to some initial guess at a solution. Since the TPBVP’s we

are dealing with are generally of high order , it is fortunate indeed that

they are linear. A logical procedure for solving reduced order filtering

problems which we are currently working on is to obtain an F matrix that is

optima l with respect to the next stage , as in [2], then modify the results

by solving the linear TPBVP to get the corresponding optima l gain.

As we hav e acknowle dged i n the prev i ous sect ion , there are s till a number

of unanswered questions in this area of reduced order filtering. The author

bel ieves , however, that the methods which have been investigated here are very

promising.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - --.- --~~ -.- - 
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1. INTRODUCTION

It is often convenient to model a high order system using a low order

dynamical model. Several researchers have considered this type of problem [1] -

[8]. In a re~~nt p~ r Er , Obinata and Inooka [8] have treated the problem of

obtaining a reduced order time invariant model which minimized a steady state

quadratic error criterion. In this paper a similar viewpoint is taken , however

we solve the nonstationary problem with a white noise input , and an integral

quadratic performance measure. Optimal control theory is used to obtain a

solution , which is conveniently found using the matrix minimum principle [9].

The problem is similar to the filtering problems posed by Lee [1OJ, and S ims

and Asher [ii], in that a singular solution is obtained . When a singular

solution is not possible or is considered too complex , a suboptimal solution is

sug gested .

2. PROBLEM STATEMENT

We consider the linear stochastic model

x( t) = A( t)x (t) + w( t) (~~)

where w (t) is zero mean wh i te noise with covariance matrix

E { w (t) ~
T (~~) Q (t) ~ (t - T )  (2)

The state vector x (t) is of dimension n , which is presumably too large to be

desirable. The output of the system , y (t). is a linear transformation of the 

- —~~~~~ -- - - ._  
..-~~~~~ 
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state vector ,

y(t) = C(t) x(t) (3)

and is of dimension m which is much smaller than n. The objective is to find

a reduced order model

~ (t) = F(t) 9(t) + K (t) w(t) (4)

where c(t) is an m vector which adequately approximates y(t). We assume

that the initial stat ist ics of the state vecto r are known

E { x ( t 0 ) ) =
(5)

Var ~x (t0) } = P0

The problem is to select the matrices F(t) and K(t), and the i ni tial con di-

tion .9(t0) i n a way that min imi zes the performance measure

tf
J + E { eT (t) R (t) e (t) + e

T (tf) Se (tf) } (6)

where e (t), the equation error is defined as

e (t) ~y (t) - 9(t) (7)

Note that we do not require apriori that 9 be an unbiased estimate of y,

although this turns out to be a property of the optima l solution. If one

does not select F optimally, however, i t can be advantageous to have a nonzero

ex pecta ti on of the error .
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3. OPTIMIZATION

The first step in the optimization procedure is to transform the problem

into an equivalent deterministic problem. From equations (1), (3), and (4),

the error dynamics are governed by the stochastic equation

e = B x + F e (C - ) w ( 8 )

where B is defined as

B~~C + CA - FC (9)

The second moment matrices associated with (1) and (8) are defined as

P
~~
(t):. E ~x(t ) x

T (t)

Pxe (t)A E ~x(t ) e
T (t)} = P

~~
(t) (10)

~ee 
(t) A F ~e (t) e

T (t)~

From (1) and (8), we can see that these matrices satisfy the deterministic

equat i ons

= AP ,~ + AT + Q

~xe = AP xe + 

~xx BT + 

~xe 
FT + Q ( C ~ K) T (11)

~ee 
= B 

~xe + 

~ex BT + F 
~ee 

+ 

~ee 
FT + (C - K) Q (C - K)T

We make the assumption that y (t0) is to be deterministic. Then the init ial

conditions for (11) are 

-— --—-.- -~~- - - --~~~~~~
--- - - - — -  --

~~~~~~~~ -~~~~~~~~~~~
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~~ (t 0) = P0 +

~xe 
(t 0) (P~ + ~ 

T ) ç T 
( t D ) ,

~~ 
~T ( t )

~ee 
Ct0) = C (ta) (p + ‘1 o ~ )C

1 
(t~~ 9(t0~~

T CT (t0) - C (t 0) ~ 
.91(t0)

+ 9(t0) T (t ) (12)

The performance measure (6) may be written in terms of the matrix 
~ee as

tf
J = tr { R(t) 

~ee 
(t) dt + SP ee (tf) ) (13)

0

The problem can now be stated completely wi thin a deterministic framework . The

matrices , F (t) and K (t), and the vector 9(t0) are to be selected to minimize

(13) subject to the constraints imposed by (11) and (12). The problem is

ideally suited to solution using the matrix minimum principle [9].

The Han iilton ian is formed as

I . T
- H = tr {RP ee + 

~ee A ee ~ ~xe A xe + 
~ex ~~~ 

(1 4)

where we have ignored the equation for since it is a known quantity . The

costate equations are obtained from (14).

A xe = 

~~~ 

= -A T A xe 
- 

~xe 
F - 8T ‘

~
‘ee (15)

and

A = .~i... = _ R _ F T ,A -
~~~~~ F (16)

• ec 
~ee ee ee

The termi nal conditions for (15) and (16) are

A (tf) = o

~ee 
(tf) = S (17)

.- _ =_ _ _ ‘__
) ‘--~
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It should be observed that •

~ 

is simply the transpose of Axe •

The transver sality condition dpp l i~
,d at the initial time provides the

correct initial condition for y. Th tran sver sality condition is

tr {dP (t
0
) ‘
~e (t 0) 

f d 
~xe 

(t 0) ~e 
(t 0) ÷ d ~ex 

(t0) ex (t0)} = 0

(18)
S i nce P0 and ~~~ are fixed and the only allowable variation is in 9 (t0). we

have from (12),

tr [A e (t0) (V (t0) - C (ta) ~ 
- A (t 0) ~~~

] dy~ (t0)

+ dy Ct 0) ~
‘
~ee 

(t 0) (y(t0) - C (t0) ~~~) 
- Aex (t 0) uo] 

I 
~ 

= 0 (19)

The above will be satisfied for arbitrary variations in .9(t 0) only if the

equation

A (t0) y(t 0) = ‘
~ee 

(t0) C (t0) ~ 
+ ‘

ex (t0) ~ (20)

is satisfied. If A ( t 0) is nonsin gular then 9(t0) is given by

.9(t0) = [C(t 0) +~~
1 (t) 

~ex
(t o ) ]  

~o 
(21)

Next we consider optimization with respect to the gain matrix , K( t).

Taking the gradient of the Hamiltonian with respect to K and setting it equal

to zero gives the expression

A Ct ) K (t) Q ( t )  = A (t) Q (t) + ~. (t) C (t) Q (t) (22)
cc cx ee

Equa ti on (22) will have a solution K(t) if the equation ,

~ee ~ e ~ 
‘cx + ‘ce C ] Q = [ t  + • •

~ 
C] Q (23)

is sa t i s f ied  at time t. If a soluti on exists , it is of the form 

~~--~~~~~~ 
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K = A~ [t + A C ] Q +F~ A~ A r Q  (24)
cc cx cc cc cc

where I’ is an arbitrar y matrix. In the above expressions 1’ is used to indicate

the pseudo inverseo fa matrix [12]. When Ace i s nonsin gular , (22) always has a

solution given by

• K = [C +A ~~ A~~~] Q Q~ 
+r [I - Q Q~ ] 

(2 5)

In reality , Q will seldom be nonsingular , however if it is , (25) simplifies to

K(t) = C (t) + A~
1 (t) t. (t) (26)

cc cx

an d a unique expression is obtained.

Obtaining the matrix F (t) is considerabl y more involved because it appears

linearly in the Hamiltonian . It therefore lea ds to a s i ngular type of opti m i-

zation problem. The part of the Hamiltonian which depends on F can be written

as

* I TH = Fo + 0 F’ (27)

where 0 is defined as

0 A ( P  - C P  ) A + (P - CP ) ~ (28)
— cx xx xc cc xe cc

From (20), i t is clear that (~(t0) is zero . If we can show that •‘(t) is zero

during the interval [t0 , t.f ]. than a singular arc exists . Taking the time

derivative of 0 gives

= F 0 - 0 F - KQ [ A xe + (C - K)T ~~~ 
+ (C 

~xe - 

~ee~ 
R ( 29)

The third term in Equation (29) is always zero when K is selected optimally,

as can be seen from Equation (22). Therefore , i f R i s zero , a sin gular arc 

- --~~~~~~ -
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exists independent of the choice of F. Generally, however , R will be positive

definite , and to insure a singular arc we must have the term c 2 A C P  - P
— xc cc

be zero in addition to the requirement of an optima l selection of K. We can

have s~(t) = o in the interval of interest if o (t0) is zero and c~( t) i s zero

in the interval [t0 t
f 

]~ 
The time derivative of ~~i can be shown to be

= ~ FT + F o + 
~ ex - CP xx ) BT - KQ (C-K) T (30)

If B is zero , then from (15) and (17) it can be seen that A is zero . An
xc

optima l choice of K thus insures that the last term in (30) is zero , an d (30)

is really a homogeneous equation in c2 when B is zero . From (20), and the fact

that • -
~ (t0) is zero , we have that o(t ) is zero and consequently a singular
xc 0

arc will exist if K is selected optimally and B is required to be zero . This

last requirement then is that

B = C + CA - FC = o ( 31 )

A solution to (31) exists if and only if

(~ 
+ CA)  C~~C = C + CA (32)

If a solution exists , it is of the form

F = (C + C A )  C~~ + r
* ( I C C ~~) (33)

*where C is an arbitrary matrix.

We have thus obtained a solution to the problem when it exists . The matrix

F is to be selected according to (33), and assum i ng A is nons i ngula r, f rom

(25) we have

K = ( C -  r) QQ~~+ r (34) 

- - - - -  ----- . -- ~~~~~~~ •- - - -~~~~~~- --- .- •
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where C is arbitrary . From (21), the appropriate initial condition is

; (t n) = C (t ) (35)

From (3), (5), and (35), it is clear that

E { e (t0) } 
= o (36)

when the solution is optimal. Furthermore , from (8) it is clear that B = 0

implies that E ~e (t)}= o for t > t .  Note that although we did not require a

priori that .9 be an unbiased estimate of y, tha t i s the way the solut ion turne d

out .

Further remar ks regar ding the opt i mal solution are app ro pria te . Note that

the weighting matrices R , and S , and the terminal time , tf~ do not influence

the solution (except that R and S should be pos itive definite syninetric

matrices.) More importantly from (33) and (34), we do not have to solve for

any matr i ces P , A , etc. The two-point boundary-value problem (TPBVP) has
xc xc

i n effect di sa ppeare d. Not even the i ni ti al variance P0 i nfluences the

solu tion , wh ich has turned out to be extremely simple.

It should have occurred to the reader that (31) cannot always be satisfied.

If one therefo re selec ts F aprior i , without regard to optimization , Equations

(15), (16), (17), (21), and (24) can be used to specify the optimum choice of y (t0)

and K for any given F. The solution , though suboptima l in an overall sense , may

be adequate . Note that in this case the weighting matrices R and S do infl uence

the solution. It should also be observed that there is no TPBVP to be solved

in this case either , alt hough a single-point boundary-value problem must be

solved off line to evaluate the optima l gain.

_ _ _ _  j



9

4. EXAMPLES

In the first example, we illustrate a case where a solution exists , and

is easily obtained. The system is as described by (1) and (3) with

o -1
A = ; C(t) = [cos t sin t] (37)

1 0

and Q nonsingu lar. The reduced order solution obta i ned from (33), (34), and

(35) is characterized simply and uniquely by

F( t) = o
(38)

K( t) = [cos t sin t]

and

y(t0) = [cos to sin t0]~ 0 (39)

If Q is singular however , the result is not unique . For example if

o 0

Q =  (40)
o q

then instead of the expression (38) for K , we have

K( t) = [y (t) sin t] (41)

where y(t) is arbitrary . This makes sense of course because (40) implies

that whatever multipl ies w1 (t) in the solution makes no difference.

We shall now consi der a problem where (31) cannot be satisfied. A firs t

order model of the form indica ted by (4) is to approximate a second order

model of the form indicated by (1) and (3) with 

~~~—-_--_ _ - .  - - .~~~~--



rr~ 
• -. ‘

~~~~~~~ ~~~~~~~~~~~~~~~~~~ -— - -.
~~~
-— - .—-— -_  

____

1c~ 0 1
A = ; C ( t ) = [t tJ (4 2 )

J~
O 

~2j

with Q>o and 
~ 

Because (31) cannot be solved , and for reasons of

simplicity . F is selected to be zero. The performance measure to be minimized

is

T
J = E e2 (t) dt + e2 (T) } (43)

0

The optimum values for the gains are found to be

T 
~~K. ( t )  = t + (1+ T - t) e~~ 1 t ~ e 1 u (T) dT ; i = 1, 2 (44)

1 t

where

u ( T )  A (1 + T) + (
~ . T + ~~~ . 

- 1) ~~ 
- 

~~~. T j = 1, 2 (45)
— 1 1 1

We emphas i ze tha t F = o i s an ad hoc dec i s i on for th i s secon d exam p le , wh i le

a uniq ue solut i on fo r the firs t case. For the secon d exam p le the i ni t ial

con di tion i s , according to (21),

2 T
.9(o = (1+T)~ ~ 

~ e~
i
~ u~ ( T )  d T  (46)

1=1

SUMMARY

In this paper we have developed new methods of reduced order modeling for

ti me varia b le sys tems wi th whi te no i se inputs . The c ri ter ion used for purposes

of op timization has been an inte gral q uad ra ti c funct i on i nvolvin g the equat i on

error. When a singular solution to the reduced order modeling problem can be

obtained , i t has been demonstrated to be extremely simple. It was shown that
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the optima l solution must provi de an unbiased estimate . When the singula r

optima l solution cannot be obtained , a suboptima l easily imp l emented procedure

has been developed for obtainin g the reduced order gain matrix. Both the

optima l and suboptimal solutions have been illust rated by example.

4
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I . INTRODU CTION

There has been considerable work dealing with the topic of filter-

ing for problems with state dependent noise [1-3]. As well as being of

theoretical interest , the topic is of some practical importance since

many systems are better modeled as having multiplicative disturbances

instead of additive . One example occu-s in the momentum exchange method

for regulating the angular ~r o e~~ion of a rotating space craft [4].

There is a disturbance whi - Ji depends on the procession rates. Another

example occurs in the desi gn of phase lock loops [2]. The phase insta-

bility of an osci lla t~ r described in rectangular coordinates appears as

wh i te , state dei ’erident noise. If one received a signal which consisted

of a large numb -’r of sinusoids of various frequencies , eac h hav ing phase

distortion , then one would have ~ build a hinh order filter to recover

the si gnal 4sing exis~ inq rrethods.

The desi gn of nigh o,de r fi1t er ~ is often problematic from the view—

point of on-line i omputat un . Therefo re , a number of researc hers have

been interest e d in desi un inq f i1 t ~ r-~ of reduced order [5-8]. It often

happens that one is only interested in estin iating a l ower order linear

transformation o~ a state vector , and it seems reasonable to attempt to

do this with a l ower order filter. Desi rin of the filter parameters is a

fixed configuration optimization proble n [8-10]. In such problems , the

structure is not necessarily optima l , but given the structural constraints ,

the parameters are selected optimally. It is interesting to note that

these problems often have non-unique solutions because there are too many

free parameters . This feature can be used to obtain filters which are

easier to imp lement than well -known techniques such as Ka l man fi l tering,

_

~ 
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even when the fixed configuration filter is of full order [8]. In some

cases , there is no performance loss associated with the alternative linear

filter , [8], [11].

In th is paper we seek to extend the reduced order filtering results

developed in [8] to problems with state dependent noise. The problem

is similar to that considered in [12], however , in [12] a discrete system

model was cons idere d , and onl y a single stage/optimization was performed.

Here a cont i nuous ti me p rob lem i s cons id ered , and the matri x mi nimum

principle [13] is used to obtain a solution . Because we allow a driving

term in the fi l ter to remove any a-priori bias , it turns out that the

prob lem has s ingular arcs , which is not surprising considering previous

works [8], [11] in the area. A very nice feature of the work is that

in some cases only linear two-point boundary value prob1c~s are obtained.

These can be solve d e i ther by a di rect use of li near sys tems theory or

by a Riccati equation technique . Under certain circumstances only a

single-point boundary-value problem must be solved .

II. PROBLEM STATEMENT

The system of interest is assumed to be modeled by the Ito stochas-

tic di fferential equation

dx ( t )  = A ( t ) x ( t ) d t  + dw(t)

+ 

~~ 
[x1(t)-~~(t)]G~(t)ov(t) (1)

where x(t) is the state vector of deminsion n and - ‘Ct) is the mean value

of the state vector. The disturbances are zero mean incremental Wiener

p rocesses w it h covar i ances

E~dw(t)dwT(t)} = Q (t)dt (2)
E~dv ( t )dv T (t )~ ~(t)dt

-2-
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It is not hard to show [i4] that the mean value vector , p sa t i s f i es

dp (t) = A(t)p (t)dt (3)

The initial condition for (1) is random w ith known mean and variance

E x( t 0 ) 
~ 

(4)

Var x(t )  } = P (5)

Equation (4) is obviously the initial condition for (3).

The observation vector is also corrupted by state dependent noise.

dy (t) = C(t) x (t) dt+dv (t) + 

~~ 
[x j(t)~~ij (t)] M~

(t)dv (6)

In (6), y(t) is the observation vector of dimension m , dv(t) is the

additive measurement disturbance , and d~ (t)  is the mult ip l icat ive dis-

durbance . The vector v(t) may be large , and some of its elements affect

the dynamic model through the terms G~ , while others affect the obser-

vational model through the terms M i . The additive disturbance , dv(t)

is a zero mean incremental Wiener process with covariance

E ~dv(t)dv
T(t)} = R( t )d t  (7)

The terms w ( t ) , v ( t ) ,  \. ( t )  and x ( t 0) are uncorrelated.

Only a linear transformation of x(t) is to be estimated , i.e., it

is desired to estimate

z( t ) N( t ) x ( t ) (8)

where z(t) is a vector of dimension ~4n.

The estimate of z(t), wh ich we call ~‘(t) is constrained to be obtained

by the filter equation

d~ ( t )  = [F(t)2(t) + ~(t)] dt + K(t)dy (9)

The vector g(t) and the initial condition , ~
‘(t0) are to be selected

so that

E ~e ( t )~ = 0 Vt = [t0. t f] (10)

-3-
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where e(t) is the error vector

e(t) = z(t) - ~(t) (11)

The matrices F( t )  and K( t )  are then to be selected so that a quadratic

performance measure t
f

J = E~ 
f eT(t) Qe(t)dt + eT(tf)Se(tf)} (12)
to

is minimized . The weighting matrix S is assumed to be positive definite

symmetric. The weighting matrix Q may be posit ive definite or zero and

is critically important to the solution.

III. GENERAL SOLUTION

In order to proceed , it is convenient to develop an equation for

the error. From the Ito differential rule [15] , it i s seen tha t

dz(t) = N(t)dx(t) + ~(t)x(t)dt (13)

Using (6), (9), and (13) it is seen that the differential equation of

the error is

de(t) dz(t) - dz(t)
or C 1

dc = [(NA_FN_KC4-~) x - qj d t + N d w  - Kd v

+Fedt+ [N~~ x .G
~ 

- K~~I ~i
Mi] d~ ( 14)

In (14) we have introduced the notation , x = x- . From (14) it is seen

that

d E~e(t ) I  = F ( t )E  e ( t )
dt (15)

provided that

g(t) (NA-FN-KC+N )n (t) (16)

-4-
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If furthermore

z( t ) = N(t )ii(t 0 ) ( 17 )

it is clear that

E ~e( t )~= 0 (18)

From (15) and (18), one can see that (10) is satisfied so that (16)

and (17) are appropriate selections. If g(t) is selected according to

(16), the error differential equation can be written as

de = ( NA-FN-KC ÷fl ) xdt + Ndw- Kdv

+ Fedt 
~i~ 1 ~ 

(NG .-KM.)dv (19)

The equation for x is

dx = A~dt + dw +
~~~ 

x~G 1dv (20)

Clearl y x and e are both zero mean processes .

If (19) and (20) are put in 1 equation , it is easy to see how

the second moment matrix defined as

P(t) ~ 
Pxx (t) Pxe (t) ~ E3~ (t)~

T(t)~ E~~( t )e T(t)~

Pex (t) Pee ( t ) E~e( t )
~
T(t)I E~e(t)e

T(t)~ (21)

propagates . This is useful since the performance measure (12) may

be written as

J = tr~ f ee (t~~
t + 5Pee(t f)~ (22)

If one has the appropriate constraint equation , the optima l selection

of F(t) and K(t) may thus be solved with determin istic theory using the

matrix minimum princ iple.

Equations (19) and (20) may be written as

—5-
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= 

E~~~~~~~~;4H H 

dt + 

~~dw - KdVH

+ ~ x .i~ d~i=1 1 ( 23)

w here

NG 1 — KM
~ 

(24)

The second moment matrix associated wi th (23) sat is f ies [4] ,

P = G P + PGT + Q + ~~ (25)

where

IA 0
- 

(26)
[ (NA - FN-KC+~ ) F

NQNT 
] 

(27)

and

- n
= \ 

~“ 
i~
’1 ~~~ 1_ i

j= 1 (28)

Partitionin g P in (25) we obtain the individual equations .

-6-
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P = AP P AT + Q 
~~~ 

(29)
xx x x xx

~ee = [NA-FN-KC+~] ~xe 
+ 
~ex 

[NA~FN~KC+N]

+ FP 4 Pee FT + NQNT + KRK T + K kj,3K
T

- N ~V2
KT - K4’2

TNT + N ~IJ1N
T (30)

and

~xe = AP xe + 
~~XX 

A~~~~~ ÷~~
T 

+ p
xe

FT

+ QNT + \V
1N
T 

- ~IJK
T (31)

In (29), (30), and (31), the terms 
~t’1~ i’~~ 

and W3 are defined as

= 

i~ 1 ~xx 1~ 
G
~ 

G .T (32)

= 

i~ 1 ~~~~ 
G. M~

T (33)

j=1

n
~
11

3 
=

.~~~ ~xx •• 
M
~ 

M~
T (34)

i= 1 ij
j=1

The term 
~ex 

is simply the tra nspose of 
~xe~ 

Clearly 
~xx 

can be ca lcu lated

independently, and can thus be regarded as a known quantity . The proble m

is to select K and F so that (22) is minimize d subject to the constraints

imposed by (30 ) and (31).

The Hamiltonian for this problem is then

H = tr 
~~~ce ~~ ee ~

T
ee 

P~~~
T
xe 

+ ~cx :
T

ex ~ (35)



— 
‘ .

~~~~~~~~~~~~~~~~~~~~~~~~

where 
~ee’ ~xe’ 

and 
~ex 

are Lagrange multiplier matrices associated with

pee ’ ‘~xe’ 
and 

~ex 
respectively. The constraint equation for 

~ex is ~~

cuded for symmetry .

The optima l solution for the gain K( t )  is obtained by sett ing the

gradient of H with respect to K equal to zero . This leads to the ex-

pression for K.

K = “ee ’[~ c (Pex C
T 

+ N’4~) + 
~ex ~~~~~ 

~~~~~~~~~~~ 
[R (36)

where the required inverses are assumed to exist. The Lagrange multiplier

matrices satisfy the equations

H -

Ace 
~~ ee 

= - 

~
Q +~\~~F + FT Aee~ (37)

and

A 
~~ xe 

= - ~~ A N C +  T A~~ + AT \xe + 
~‘xe~~ 

(38)

The matrix ‘cx is just the transpose of -~ xe~ The initial conditions for

(29), (30), and (31) are

and 

P
~~

(t) = Var ~x(t0)~ = P
0 (39)

P ( t ) = P0 N (t~)~ ; P ( t ) = N ( t
0) 

P0 N (t0)
T (4 0)

The terminal values for (37) and (38) are as required by the transversa li ty

condition applied at the terminal time

‘see (t
f

) = S (4 1 )
and

‘xe (tf) 
= 0 (42)

-8-
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Notice that I
~ee (t) can be computed separately without solving the re - t

of the problem if F is known beforehand . However at this point , we have

not yet determ ined how F should be selected . It w ill be seen that this

depends i n a cr i t i cal way on the nat ure of Q. We w i l l  co ns id er two

d ifferent classes of problems .

CASE I.

In this case , we assume that Q = 0. The meaning of this is that

the qual i ty of the est i mat i on al go ri thm is onl y i mport an t  at the term i nal

time . This may make sense for rather a large class of problems . The

reason that th is case is of particular interest is that the selection

of F does not affect the Hamiltonian , so tha t  we are free to select  i ts

value based on other considerations.

Cons i der that part of the Ham i ltonian wh i ch depends ex p lic i tly

on F.

= tr ~FO+O
TFT~ (43)

where

0= (P
ee

_ NP xe ) ‘ee + (Pex~NPxx ) ‘xe (44)

From (39) and (40) it is clear that (-3(t0) = 0. If i t can be show n that

0(t)  = 0 for all t in the interval of interest , then a singular arc

exists . The Hamiltonian is independent of F. In this case , one does

not need to specify F to stay on the singular arc . Differentiating

0 gives

(45)

A = FO- OF + K[RKT ‘ce + ‘V3 KT .\ - CP~ ~ee 
- CP

~ ‘xe 
- 

~~~2

T 
‘ce - ~,

TNT \ ]

-9-
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The bracketed term in the above is zero whenever K is chosen optimally,

i.e. , accor ding to (36). Hence

0( t ) = F( t )0( t ) - 0( t )F( t ) ( 46 )

an d (46) implies that 0(t) = 0 for all t -> t since 0(t0) = 0. The

selection of F is thus not a performance factor. It may be selected

a-priori so that \
ec

(t)  can be precomputed. It may be selected so as

to achieve some other objective such as reduced sensitivity , computational

convenience or to minimize some al ternat ive performance measure specif i-

call y involving F.

When one thi nks about i t , the singularity with respect to F is

not particularly surprising. Clearly two different filters can even pro-

duce the same out put at a part icular time , given the same input. What is

interesting, is that this fact is generally overlooked , and as the exam p le

problem wil l  show , that an a l ternat ive f i l ter  structure can be re lat ive ly

easily implemented.

CASE II.

In this case the weighting matrix , Q, is a positive definite sym-

metr ic matrix. When one develops an expression forO, the result i s

0= FO-OF +
~~~Q (47)

instead of (46), where

f1= NP — P (48)xc cc

Thus unless i~ is zero , a singular arc does not exist.

-10-



-

~~~~~~~~~~~

—.-- ---—-_- .

It is easily seen that ~1(t) does not equal zero unless F is slected

appropriately. From the initial conditions , i~1(t0) = 0. Taking the

time derivative of I~ we get

= F~1+UF~ + (NP xx~Pex ) (NA FN KC4~)
T

-K [RKT
_ 
~I,

TNT + ~
IJ
3
KT_CP Xe] 

(49)

Examining the last equations we see that if

(NA-FN-KC4~) = 0 (50)

then

= Ff~+~~F~ (51)

This follows from the fact that when (50) holds , \ xe ( t)  is zero for

all t in the interval.  Consequentl y the expression for the gain become s
—1

K = [Pex C
T + N ’l/2] [R + ~If3] 

(52)

and (52 ) is suff icient to have the last term in (49) be zero . In v i ew

of (51) and the fact that f~ (t 0 ) is zero , it is clear that ~~(t)  is

zero for all t~ [t0~ tf] 
provided that (50) holds and that the gain is

selected optimally.

When f~ (t ) is zero , it may be seen that the orthogonality require-

ment is met in a reduced state space , i.e .

I

= N (t)Pxe ( t ) P ee (t) = E -~ [z(t)~e(t)]e
T(t)~ = 0 (53)

Since ~ = z-e , (53) may be written as

E ~~(t) c
T(t)I = 0 (54)

— 11—
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so that what we have required for singularity is that the error and

the estimate be orthogonal.

When N is the identity matr ix and there is no state dependent

noise , the result is the Ka lman fi lter , with the requirement ~5O) that

F(t) = A (t)-K (t)C(t) (55)

which of course means that the f i l ter is of full order . When the f i l ter

is of reduced order , and N is constant , what we have is the observer

constraint equation [16]

NA-FN-KC = 0 (56)

In genera l, when Q> 0, (50) is a necessary condition for a sing ular arc .

Clearly it is not always possible to select F to satisfy (50). In such

cases , the problem needs to be re Formulated so that an unbounded F is

not indicated. A lternatively a suboptima l solution can be accepted.

We will examine this topic in the next section.

A necessary and sufficient conditi on that (50) have a solution

F , is that

[NA-Kc+~] 
N
’
~ = [NA~Kc+~] VtE~t0.tf} (57)

If (57) holds then a solution is

F = [NA_KC+r~] N~
’+ I [I-NN~] (58)

where N~~is the pseudo inverse of N and where I’ is an arbitrary ~x

T .  .matr ix [17] . When the mat r i x  (NN ) is nonsinqular then the solution

(58) can be written as

F = [NA~KC+~] M
T 

[NN T] (59)
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IV .  SPE C I F I C F SOI~~ !0NS

In the preceding section we have shown that when one is onl y

interested in estimation at a particular time , the selection of F may

be based on considerations other than optima lity , so that one may

pi ck it pri or to optimization. Furthermore , w hen Q ~O , it may not

be possiHe to find an F which results in a singular arc . In

that case one may opt to select F prior to optimizat ion. In this

sec ti on , we will see that when F is selected a priori , the two point

boundary value problem which mus t be solved for the selection of K

is linear , and hence relatively easy to solve .

Consider substituting the gain expression (36) in (31) and (38).

The resulting expressions are

~xe = AP xe ÷ P (~+NA-FN )T + PxeF
T + QNT + i

1 
NT

(P xx C
T+1

2
) (~~~~3)~~ [(Pxx C

T 
+ 
~~ ~xe

4 ~~ N~ + C P 1 (60)2 xej
and

xc = ( N A FN
~~
)T A ce - AT ‘xe - A xe F + CT (R+

.[~ CT + ~ )T + ( C P  + ~T .T) . 1 (61)
xx 2 xc xe 2 eej

When F is known a priori , both and tec are known in the sense that

they may be precomputed. The above equations are then seen to give a

linear TPBVP in the matrices 
~xe and 

~xe~ 
The solution may be obtained

in a straight forward manner using linear systems theory , or alte rnat i vel y

by assuming that the elements of 
~xc are linearly related to those of

~xe ’ 
an d obtaining a solution involvin g a Riccati equation. The values

obtained for 
~xe 

an d -‘xe may then be used io the gain expression (36).

-13-



We cannot overemphasize the importance of the fact that our result

i s a l i nea r TPBVP , since i t i s reasona ble to ex pect to solve a linear

ma tr i x TPBVP . Often a nonl i nea r mat r ix  TPBVP i s so di ff ic ul t to solve ,

that the utility of the result is questionable. We shall explain pro-

cedures for solving a linear TPBVP by looking at a particularly easy

case i n wh i ch 
~ec is a scalar times the identity matrix. This results

when both F and Q are scalars times the identity matrix. When this is

true , (60) may be wr it ten as

~xe = L ii Pxe + Li2 .\ xe + D1 (62)

where

F -  L* C  (63)

~~L* (CP xx ~11
T) 

~~~ee (64 )

= 
~xx (N~~~~~ )

T 
+ QNT ÷ .

~

, N
T 

- L*~
,TNT (65)

an d where

L* = ( P xx C
T + ‘I’ ) (R + ‘4’) (66)

Equation (62) is of the form

~xe 
= L21 ~xe + L22 “xe + D2 ( 67)

where

L21 
= CT (R *)  C A ce (68)

L22 = ~A
T
~F + CTL*T (69)

and

02 = (NA FN~~)T 
~ee + C

T
(R+ ~4’) 1 ~j T~T A ce (70)

- 14- 
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Let L be the matrix

L = 

~~~~~~ 

(7 1 )

and ‘I be the associated state transition matrix which can similarly be

partit ioned

[~~
1 I ~121

4 =  - (72)

~2i ~~22

Then the solution to (62) is

Pxe(t) = 
~~ 

(t , t0)P xe( to) ~‘~i2 
(-t ,t0) A xe(to)

t (7 3)
+f [~11( t~~) 01(T) ~~12 

( t , T )

and

A xe (t) ~2i(t
,to )P xe(to) 

+ ~22(t,t0) A xe(to)

+) 
[~2i

(t. T) 0
1
(T) 

+ ~22(t ,~ )D 2(T)]dT 
(74)

Applyi ng (74) at time t = tf g i ves

A ( t f) = 0 = ~2l(tf~to
)P xe (to) + ~22

(t
f~

to) A xe (to)

~: [
~2l (t f~1)o 1(T) + ~22(tf.r)D2(T)]dT (75)
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We can sol ve (75) for xe (t0) and substitute the results in (73) and

(74) to obtain the solution for all tE[t0, tf].

There is another approach which is probably preferable in most cases .

We assume that 
~xe 

is linearly related to 
~xe 

by the rt~lat io nship

A e ( t ) = U ( t )P xe(t) + B(t) (76)

Differenatiating (76), one obtains the differential equation

A = 
~~xe +U[L 11 P + 01+L 12 UP xe + L12 B] + (77)

Alternatively, from (67)

xe = L21Pxe + L22 UP~e 
+ L22B + D2 (78)

Equating (77) and (78), we get for U

+ UL 11 + UL 12U = L21 + L22U (79)

and for B

UL12B + B + UD 1 = L22B + 02 (80)

Since t xe (tf) = 0, the terminal conditions for U and for B are

U (tf) 
= 0 

- 
(81)

B (tf) o (82)

The Riccati equation (79) and equation (80) can be solved backwards in

time from the above terminal conditions. The optima l gain may then be

expresse d as -1
K = ~ xe

TC
T+~~2 + A ee ’ (UP xe4B)

T(P xxC
T
~~2)] [ P 4 4

3] 
(83)
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and 
~xe i s eva lua ted as

~xe = 
~ii~ xe + L 12 [UPxe + B] + D~ (84)

The matrices A ee~ ~xx’ 
U , and B must be evaluated off line , however , 

~xe

and K can be evaluated on line if this is desired . Most li kely these

would also be evaluated off li ne and K stored for on line calculation

of 2(t) using (9).

V. EXAMPLE S

The first example we shall consider is of the category discussed in

Case II. We assume that A(t) is zero , N(t) = C(t), and that there exists

an F such that

FC = C - KC VtE [t0~ tf] (85)

then if CCT is nonsingular

F = 
[~C

T 
- KCCT] (C CT) 

-1 
(86)

The filter equation is

dz = CCT (CCT) zdt + K [dy - ~dt] 
(37)

The initial condition for (87) is

= C(t0) ~0 
(88)

Toe gain is of the form

K(t) = [Pxe
TCT + c~2] [R + (89)
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where 1
~xe is the solution to

~xe Pxe (CC T)~
1 
iC~

T
~CC

T
4Jj+()* i~ 

C
T
-4 2 K

T 
(90)

Alterna tively since CPxe = p
ee’ it may be desira ble to evaluate (89)

as 

K (t) [pee ~ C~2] 
[

~ + (91)

where is the solution to

~ee
( t )  T(~~

T
Y

l 
- K] ~ee~~ee [~

CT( C C Ty1 
- K]

+ CQC T ÷ KRK T + Kf 3K
T 

- C~2K
T

- Kp 2
TCT + C~1C

T 
(92)

The reason (92) is appeal ing is that 
~ee 

has fewer elements to calculate
then 

~xe~
The next example is concerned with the very simp le problem of

estimating a constant havin g zero mean and variance 1 prior to observations.
The observation is of the form

d y = x d t + dv i-~~~~ ., 
(93)

where v and ~ are zero mean wh ite noise w ith covar i ance pa rameter 1
and M is constant. We are interested in estima ting the value of x at
time , T. Hence

U = E e2 (T) ~ (94)

and this is a problem of the category referred to as Case 1. For com-
put ation al convenience we select F 0. The TPBVP then is

~xe = - 

~ ~ xe + ‘xe~ (95)

= 
~ ~ xe + A c ) (96)

-18-
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with 
~xe (0) = 1 and Axe (T) = 0, where

~ (1 + M2) ’ (97)

The solution i s

1 - ~(t-T)
Pxe (t) = ___________ 

(98)
1 + yT

and

I /
A (t) = —-_____ ~99)xc 1 + ’ 1~T

Interestingly, because of the complimentary nature of Pxe (t) and t.xe (t),

the gain is a constant ,

I
k(t) = k = ______

1 + 1T (100)

The fi l ter is simply

A
dx(t) = — dy(t) 101

+

and the error variance at time t = T is

1 1 + M 2
P (T) = = 

2 
(102)

1 + Y T  1 + M  + T

The filter (101) is simpler to construct than the choice which would

require F = -K , i.e., one of the form

d~(t) = k(t) [dY(t) - ~(t)dt] (103)

-19- 

~~~~~~~~~~~~~~~~~~~~~~~ 

.



- .- ——~~.- - - - ._.~~~~~~~~ .~~~-

even thouqh ii obv iously a full order filter. The authors feel that

the non uniqur property of optima l linear filter ’. for certain cases is

a feature whi h one should take advantage of .

VI . REMAR KS AND CONCLUSIONS

We have extended the results of [8] to problems having state de-

pendent noise in the observation and dynamical equation. Control

theoretic methods have been used to solve the problem , and optimal

solutions have been shown to correspond to singular arcs. Different

solutions result when there is an integral performance measure than

when only estimation at the terminal time is important. In some cases ,

we have seen that it makes sense to select the filter matrix ahead of

time and then optimize the gain. The computational algorithms associated

with such prior selection are particularly convenient. There are no

terribly difficult TPBVP ’s in this approach and that is why the authors

feel that it is practical and useful , both for full order and reduced

order filters. The amount of off line calculation necessary to simplify

on line filtering appears to be quite realistic.

-20-
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AB STRACT

The linear reduced order filterin q problem is formulated as a matrix two-
point boundary-value problem. Cases are presented in which the two-point
boundary value problem simpli fies , an d may be solve d wi th a reasona b le amount
of calcula ti on .
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INTR ODU CTION

In this paper we consider estimating only a part of a state vector , using

a reduced order linear filter. The problem is motivated by the fact that

sometimes one is only interested in estimating a portion of the state vector ,

while the entire state vector may be of large dimension. For example , the

entire state vector might contain state variables associated with a detailed

model of the noise generating process , and the filter designer might only be

interested in estimating position and veloc i ty . The complexity of the Ka l man

filter for estimating a large state vector leads one to consider less compli-

cated reduced order filter designs for estimating the variables of interest.

The reduced order filter would typically have fewer on line calculations , but

a greater number of off-line calculations required for evaluating the filter

parameters .

There has been consi dera b le researc h i n the area of reduced or der f i lter-

ing [1-8] because of the difficulties involved in implementing a full order

filter of large dimension. This paper is a discrete version of the work

presented in [8], w herein a con ti nuous ti me p ro b lem was formula ted as a two-

point boundary-value problem (TPBVP). The discrete problem is quite different

than the continuous time problem , since some of the filter variables to be

optimized appear quadratically in the discrete problem and only linearly in the

con tinuous problem . This paper also represents an extension of [5), where a

discrete reduced order filtering problem was solved , but the parameters of the

reduced order filter were only optimized with respect to performance at the

nex t stage. Here parameters are optimized over an interval. A solution is
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ii
obtained usin g the m atrix form of the minimum principle [9]. As in [8], a

su boptimal a pproac h i s su ggested whi ch lea ds to a l i near TPBV P to solve , an d a

method of solution is suggested .
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PROBLEM STATEMENT

Consi der a li near stochas ti c process def ined by the di scre te state

equation

x = A x + w ; j = 0, 1, ... (1)
j+ 1 i i  j

where x~ is the state vector at stage j, an d w~ i s a zero mean whit e noise

vector. The system is observed with noisy linear measurements

y~ = C~ x~ + v~ ; j = 1, 2 , . . .  (2)

where y
~ 

is the observa ti on an d v~ is zero mean wh i te noise. The covariance

matrices for w . and v. are

E ( w~ w k
T 
~ = Q~ ~ k j (3 )

E (v .  v T } R , s  .

3 k j  k j

The noise terms , w . and v . are not correlated with each other or with the
U 3

initial condition , x 0 . In the pro b lem cons id ere d , a l ower order linear

transformation of the state vector is of interest

z. . x (4)
3 3 j

The dimensions of z3 , x~ , and y . are 2 , n , an d m respectively, and < n .

Since z
1 

i s l ower di mens i one d than x~ , we consider est imat in g i t w ith

a reduced order filter of the form

= F~ z~ + K. y
~~~ 1 + g

~ 
(5) 
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The objective of the problem is to select 9 . and to satisfy a require-

ment that the estimate be unbiased , i.e.,

E { e. } = E { z~ - } = 0 (6)

The matr ices F~ an d K~ are then subject to optimization to minimize a

quad rat i c performa nce measure ,

M-1 T T
U E { 1: e . U e + e S e } (7)

jo 3 j 3 m m

The solution to the unbiased requirement is easily obtained by considering

the error difference equation . The opti mi zat ion prob lem can then be solv ed

usin g the matrix minimum principle.

THE UNBIASED REQUIREMENT

By considering (1), (2), (4), and (5), we f i nd that the di fference

equ a tion for the error is

e~ + 1 = [(N
i + 1 

~~ 
C~ + ~~~~ 

A~ - F . N . ] x~ + 

(8)

(N . - K . C . ) w . + F  e - K  v - g
3 -4 - 1  3 J +~ j  3 j j j +

~ 
I

Taking the expectation of both sides of (8) gives

E t c . ÷1 } = F. E[e . } + [(N .
1 

- K . C.~~1 ) A~-

(9)
F. N .  ]~~~. — g.
3 3 .3 3

w here 
~ 

AE  { x 3 I. From (9) it is clear that we will have a linear homo- 
. 

-

geneous equa tio n for the p r ior  ex pec ta ti on of the error provided that  g
~ is
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selec ted as

g
~ 

= [(N
i + 1 

- K~ C 
~ + i~ 

A . - F . N . ] 
~ 

(10 )

Hence E { e . } = 0 V . > o if E { e } = 0, wh i ch will be true if z is
3 3

___ 
0 0

chosen as

z = N  ~ (11)
0 0 0

With selected as in (10), the difference equation for the error is

e . = G. x . + D . w . + F  e - K v . (12)j+ 1 3 3 3 3 i j j j+ 1

where we have def i ne d

~ [ ( N ~~÷ ~~~~

- K~ C .~~1 ) A .  
- F~ N

D
i ~~ (N~ + 1 - K~ C 

~ 
+ (13)

~T. A x  - p .
3~~~~~j U

I t i s clear  that x~ is a zero mean process satisfying -

= A~~ + w~ ( 14)

The remaining problem is to minimize the error criterion (7), with respect

to F~ and K~ , subject to the constraints imposed by (12) and (14).

OPTIMIZATION

The performance measure (7) may be written in terms of the error

variance matrix

M- 1
J = tr {~ ; U P ( j ) +  s~ (M) } (15)

~~~~~ ~ 
cc c c

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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where

~e e (3 ) .~ E l  e~~e~ 
T - (16)

From (12) and (14) it is seer that ~ e error variarce matrix satisfies

= F~ ~~~~~ 
) F~~ F j P

e~ 
(i ) G~~ + G j P x e ( j ) F j

T+

( 17)
G~ P ~~ ~ ~ ~ 

T 
+ D~ Q~ D~ 

T + K. R. + 1 K. T

where

P xe (j) ex
T ( j x j e T

j} (18)

propagates according to the equation

P xe (j + 1 ) = A j p
xe (j )F j

T + A j P x x (j j
T + Q j D j

T(19)

From (14), the ma tr i x P 
~~ 
(j)AE { 

~ 

T satisfies

P
~~~

(j+ 1) = A j P x x (
~

) A j
T + Q~ 

(20)

The initial conditions for (17), (19), and (20) are

P~~~ (o) = E~~~0~~0
T } = Var { x (o) ~ = P 0

(2 1 )

~e e~ °~ 
= N 0 P 0 N 0

T; P xe (o ) p 0 N T

The problem is now completely with in a deterniinistic frame and can be

solved using the matrix minimum principle. The Hamiltonian is of the form

H j = tr (Uj P (J )+ P ee (i + 1 )A T
e e (~~

+ 1 )+ P e x (i+ 1)t e x
T (i+1)

T (22)
+ P xe ( j + 1 )  A x e  ( j + 1 )  ~

where A e e and x e are Lagrange multi pliers , and -
~ e ~ 

~S the transpose of
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xe~ 
After substit uting from (17) and (19), the costate equations can be

found from (22).

A ee (j)~~~
)H j = U j fF j

T A ee (j+1)F j (23)

and

A xe (j) H
~~~~~

= G j
T
~~ee

(J+ 1)F j + (24)

T ~
P xe (j)

A~ ‘
xe (~~

+1
~~~j

The terminal conditions for (23) and (24) are

~e e  (N) = S (25)

and

~x e  (M) o (26)

Setting the gradient of the Hamiltonia n with respect to K~ = o gi ves a

necessary condition for optima lity ,

A c e  (~ 
+ 1) K~ [ C~ + 1

P
~ ~ 

(~ 
+ ~~ + ~ 

T 
+ R~ + ~~~~~ 

= 
~ c x  i + 1) 

~~~~ 
+ ~~ C~ + 1

+ 
~~~~~ 

+ 1) [ F. (P (j) N~~ (j
~ 

A . T (27)

4- N .÷ ~ ~xx~~ 
+ 1)]

Similarly . setting the gradie nt with respect to  F~ equal to zero gives

A ee (J+ 1)F j [ P ( j)~~P ( j) N j
T
~~N jP x e (j )+ N j P x x ( j) N j

T]

= 
~~~~~~ ~

1) 
~~ee 

(j+ 1) (N~~+i K~~C~ ~~~~
) ]  A~ [P~~~ (j) N j

T p x e ( j)]

rhus we have the TPBVP giving the necessary conditions for an optimum . In
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general , such a problem is difficult to solve. There are two cases in which

it is not unreasonably difficult to solve the problem . In the first case , the

TPBVP simplifies into a sin gle point boundary value problem . The Ka l mnan

filter is of this category . In the second case , ~~ is not optimized , but

selected prior to optimization. The optimization of the gain K. may then be

accomplished by solving a linear TPBVP which is a routine procedure.

SIMPLIFICATION

In this section we show that there are circumstances where the TPBVP

simplifies considerably. Assume that it is possible to select F. in such a

way that G~ is ze ro , i.e.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (29)

Then from (24) and (26) it is clear that “~xe 
(j) is zero . If A c e  is  non-

singular , and if furthermore

(30)

then (28) can be written as

F i N  [P (j)N 
T 

e~
i
~~ 

= (N C .÷ 1 ) A

(31)

so it is clear that (29) implies that F. sa ti sf ies  the necessar y con d i ti ons

for an optimum. It really isn ’t necessary that ce be nonsingular for (29)

t -o in i~~1y (28), but it is critical that c~( j )  be zero , so we investigate this

point

Using (17) and (19), and noting that G. is zero , we ob ta i n

_ _
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~~( j + i ) = F ~ (i)r T + [ K c Q C 1
T +~~~R . 

(32)

~~~~~~~~~~~~~~ F~ ~~~~~ 
A~~

T C~~~1
T ] K. T

We will show that the bracketed term in (32) is zero when K~ is selected

optimally. With G~ equal zero , (27) will be satisfied if

K~ [C~ + ~ 
P (j + 

~
) C~ + 

T 
+ R . 

+ ~~ 
= [ F . P cx ~~ A 

T 
+ N. 

+ 1 ~x x ~ 
1)

-F .N • P (j)A T
IC T (33)

3 3 xx j 3

We suhs ’itut e for F~ N~ f rom (29) in the last term of (33). obtainin o

Kj [C j+ l P xx (j+1)C j+ i
T + R j+l 1 = [ F j P ex (j) Aj

T + N j+l P~~x (j+ i)]

T (34)
+ 

T 
- [N . + ~ 

- K 
~ 
C~ + i~ 

A~ P ~~ ~~ 
A T c~ + ~

Substituting from (20) for P~~(j+ 1), and simplifying the result gives

K. [C . Q c . 
T + R . ] = [F . P (j) A T 

+ N . Q . IC . 
T

.3 j+1 j 3 ÷ 1  3 + 1  .3 cx 3 3 + 1  j 3 + 1
(35)

which insures that (32) may be written as a homogeneous equation

ç~ (j+ 1) = F. c~(j) F .
T (36)

whenever K . is selected optimally. From the initial conditions of the

problem , o (o) = 0, so (36) implies that ~(j )  = 0 for j > 0 .  We therefore

have established that (29) and (35) will satisfy (27) and (28), the necessary

conditions for optimality . We can write (29) and (35) as

T T I I T T T
A. C .  N. K. A N

-~~-~~
+

-
1 

~~~~ - -  _ _H ~~~~~~~~~~~~~~~~~ 

3 = 3 ~~~ (37)

(Cj + 1 QjC J f I
T +R j + l )HC j + l

A j
P
xe
(j) r~ ’ C

J
~~1

Q~~N~~~1
T

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _
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or

K
L. = B. (38)3 — 3

F
3

where L~ and B~ are defined as the corresponding matrices in (37). A

necessary and suffic ient condition for (38) to have a solution is that

L . L.~~B. = B . (39)3 3  3 3

where L~
t is the pseudo inverse of L~ . If a soluti on exists it is of the

form

{K~~~F~~] = (L
i
t B .) T + r ( J -  L

J
t L~~)T (40)

where C is an arbitrary matrix.

I t i s of i nteres t to rela te our so lu ti on to the we l l  known Kalman

filter soluti on when the fi l ter is not of reduced order , but N~~I . In
this case (29) requires that F~ be selected as

F. (I — K ~ C~~+1 ) A . (41)

whi h is the same as the Ka l man fi l ter result. Using (41) in (35) we have

[C . Q . C .  T ÷ R  + C . 4 . ° (j)A .T C 
T ] K T

j~~1 3 3 4 1  3 4 - 1  3 + j  3 x e  3 j 4 - 1  3
(42)

[ C. Q. + C . A. P (j) A. T ]j~~1 j j + 1 .1 xc 3

Noting that P (j) 
~~~~~ 

and defining the one stage prediction error

var iance matrix as

~ee  (j+ 1 j) = A . P (j) A .T + Q . (43)
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It is clear t h t  (43) giv e’ , the common expression for the Kalman gain

= 

~ee  ~i 
+ 1~j) C . T 

~ C. ~ ~
ee  ~ 

+ ljj) C. 
+ 

I 
+ ~~ + ~ 

-1 (44)

Since in the reduced order case , we may not be able to solve (40), or more

fundamentally, may not be able to solve the TPBVP specified in the previous

section , we therefore investigate a partial solution where F~ is selected

a priori , and only K. is optimized .

SPECIFIED F. SOLUTI ON S
3

The idea that we suggest in this section is motivated by the fact that

if we selec t F~ prior to optimization , the remaining TPBVP is linear , and there

are a number of approaches available for solving linear TPBVP’ s. If a solution

ex ists , it can be obtained in a predictable number of steps , depending on the

procedure used . Thus a reasonable amount of off-line calculation can bring

about a large savings in on-line calculations. The performance loss can be

made small by selecting F~ in some way which relates to performance , but does

no t requ i re solv i n g ~ TPBVP . Such a procedure was indicated in 5] where only

single stage optimization was considered . We should also point out that if one

is only interested in the estimate at the terminal time , the selection of F .
3

does not affect the performance measure. This was proved in [8] for continuous

time problems . Hence the method we propose here is appropriate for that

speci a l case , i.e. the actual optimal performance will be achieved .

If F~ is selected a priori , we note from (23) that A ce may be regarded as

a known quantity , as is P .  in the sense that it may be precomputed without

regard for the remainder of the problem . If ?.ep (j) is nonsingular , one may

solve for the gain K~ as

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
—.-..—-- ~~~~~~~~~ —. .~ _. —.. - - -~
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K~ = [A~~
’ (j + 1) ‘ cx ~ +1) ~xx ~ + 1) + F~ { ~ex ~~ 

- N~ ~xx 
(j)} A~ (45)

+ N . ÷1 P (j+ i)] C~~~1
T [C~~~1 ~~ (j+ 1) c~~ 1

T 
+ R~~+ 1 ]

where we have also assumed that [C. 
+ 1 ~~~~ + 

~~ C. 
+ 

I 
+ P . +1 ~ 

has an

inverse. Substituting (45) in (19) and (24) we obtain the expressions

p (j+i) = (I - P (j~~1)C . T N T) A . P (j) F .T + D (flxc X X  3+1 3 + 1 3 xc 3 1 (4 6)

~~xx 
(j +1) C~ + ~~ N. 

+ 1 
T 

~xx ~ 
+ 1) 

Xe ~ 
+ 1) 

~~ee 
(j + 1)

I T T
~xe

(
~1~~ 

A~ ( i - C~ ÷ 1 M . ÷ 1  Xx 
(j+1) ) A xe

(
~~

+i) F . + D2 (j)

T T (4 7 )
~A .T c . M T A . P (j) F. , (j+i) F .

3 j+
~ 

j+ 1 3 Xe 3 cc 3

where

D1 ~~ 
= (I - 

~xx ~ + 1) C . 
+ 1

T M +1 
T’, 

~~xx ~ + 1) N. 
T 

- 

(48)

A. P (j) N .T F .T)
3 xx 3 3

D2(j) 
= [(N . ÷ 1 

A • - F . N.)T - A~
T CT~~1 

M .
1
T 
~~~ ~~~~ N.~~1

-A~ ~xx ~~ 
N~
T F~

T)] ‘ ce (j + 1) F~

and

M . A C . I (C. P (j+ 1 ) C. T + R. ) 1 (50 )
j+~ 

j+ 1 j + 1  Xx 3 + 1  3 + 1

The boundary conditions for (46) and (47) are specified by (21) and (26)

respectively. Equations (46) and (47) are linear in the matrices to be

computed , P and A . Therefore there are a number of ways to solve the
xc xc

prob l em. One approach is to assume a linear relationship between the elements

~

- ‘--~~~ - -~~~~~~~~~ - - “—~~~~~~~- - __ —.--- -—--.- .---..-- ~~~~~~~~~~~~~~~ - .
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of P and A , i.e. after putting the elements of A in a long vector I

and similar ly putting the elements of 
~xe 

in a vecto~~p we may assunie~~hat

A
xe ~~~~~~ 

= 
~~*

j P
xe
* 

(fl + 
~ 

(51)

Recm .rsive equations may then be obtained for and 
~~~~~~~~ 

and the TPBVP is

effectively transformed into a single point boundary value problem.

We illustrate the above remarks by examining a special case where it

is not required to first put the elements in a vector format. It is assumed

that the matrices of (23) are all in a scalar form , i.e.

F . = f. I (52)
3 3

‘
~ee ~~ = A ce ~j) (53)

which requires that S and U be similarly defined. Then (46) and (47) are

of the form

~xe ~~ 
+ = 

~~
“ ~~ ~xe ~~ + 

~12 ~~ 
‘ xe (j + i) + D1 (j) (54)

~‘ xe ~~ ‘
~21 ~~ ~xe ~~ + 

~22 
(~i1)  ‘ xe ~ + 1) + 02 ~j) (55)

wh ere

~1i ~~ 
~ f~ (I - + 1 ) C~ + 1

T N . 
+ 

T ) A .

‘
~l2 ~ ~~ee~~ 

(j + 1) 
~~ 

(j  + 1) C. 
+ 

T N 
+ 

I 
~x x ~ + 1)

~21 
~~~~~~ ~ 

_ f
~ A (j + 1) A~ C . 

+ 1 
N . 

+ ~

~22 
(j) A f~ A~

T (I - C~ + 
T N. 

+ 
T 

~~~~ 
i + 1)) 

~~~~~~~~~ -... -.—-- -.---- --— -— , -.—--- - - — — —-—--—
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A linear relationship between P and A is assumed , i.e.xe xc

A
~1 ~~~ 

= ‘D~~~ ~~~ 
(57 )

Substit utin g (57) in (54) and (55) gives

~xe 
(j + 1) = 

~~ 
(j) ‘D + 

~12 
L~ ) 

~
j + 1 ‘D xc (J + 1) + 

~12 ~~~j +  1 
(58)

+ D1 (j)

~j ~xe ~~ + 

~j 
= 
~21 ~~ 

‘D xc (j) + u22 ~3) ~j + 1 xc ~ + 1) 
(5 9)

+ 
~22 ~~~ 

~i 
+ i 

+ D2 (j)

Solving for 
~xe 

(j + 1) in (58), and substituting that result in (59) gives

~
j ~xe ~~ 

+ 

~
j = 

~21 ~~ ~xe ~~~ 
+ (122 (j) 8j + 1 + D2 Li)

-1 (60)
+ ‘~22 ~~ ~j+1 

[1 — 1h 12 (i) ~j+ 1
1 

~‘~ii 
Li) 

~xe ~~ 
+ ‘
~12 

L’)

+ D1 (j) ]

If the above is to hold for arbitrary ‘D xc ’ then we mus t have

_ 1
= a21 ~~~ 

+ 122 ~~ + 1 [1 £
12 

(j) E . 
+ 

] 
~ 

(j) (61)

and

~j ~22 
[I + j+ 1 

(I - 

~i2 ~j+ 1~~

1 
a12 (i)]~~+ 1 + 02 

(62)

+ 
~22 ~~ 1 

- a
12 

(j) 
~~~ ~

) ‘ Di (i)

The term i nal  con d i tions for the ab ove are

= ~~ 6 M = (63)

L~~.. .~~. — —
~~~~~ .~~—~~—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ • . .~~~~--. - - . .~~
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Havin g solved backwards in time to evaluate ~}and {~~~ . one may then sol ve

(58) forward from the initi al condition specified by (21). Since A xe is

known in terms of P , (45) may then be used to evaluate the optimum gain
xc

sequence. We note that the algorithm we have suggested will fail if any of

the required matrix inverses fail to exist any where along the trajectory .

EXAMPLE PROBLEM

In this section we domonstrate the performance of a filter designed with

a specified set of values for {F.}. The example is a simplified model of a

discretized inertial system as treated in [8]. The dynamics are modeled as

+ ~ 
= [i A] x~ + w~ (64)

where A is .02, and the observation model is

y. =[1 0]x . + v  (65)j + 1  3+ 1 j+ 1

The covariance matrix of w~ is assumed to be

T [0 01
E w .  w, } = 1S .k (66)

LO 1J ~

an d v~ is wh i te noise with covariance parameter .1. The initial variance of

the state vector is assumed to be the identity matrix. It is desired to

es ti mate x 1 using a first order filter of the form

+ 1 F~ 
~ 

+ K~ + 1 y~ + 1 + g
~ 

(67)

From (10), gj mus t he selec ted as 

—.._ - - ~~~~~~~~~~~~~~~~
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1 A J
= [( 1 — K~ - F~) (1- K~) t~ p~ (68)

The filter parame ters F~ and K~ are selec ted in th3 following way . First a

single stage optimization procedure is used to obtain values for F~ an d K . as

indicated in [5]. This does not require solving a TPBVP . The performance of

the resulting filter is shown in Figure 1. The value of F~ i s m a i n t a i n e d , but

K~ is optimize d accor di ng to th e method p ro pose d in th is paper , i.e. by solving

a linear TPBVP to minimize the performance measure

J = E (ME1 e2~ + e M } (69)

The results are shown in Fi gure 1 where they are compared with Ka lman fi l ter

results and sin g le stage opt im i zation resul ts . It is seen that performance

can be improve d , relative to that obtained in [5], whi le ma i n t a i n i n g the same

amount of on l ine calculations. The increased number of off line calculations

is wi thin reason since only a linear TPBVP must be solved .

REMARKS AND CONCLUSIONS

In this paper we have investigated the discrete version of the reduced

order filtering problem . The solution to the general problem is seen to be a

nonl i near ma tri x TPBVP , and hence of limited usefulness. We have shown ,

however , tha t under certain conditions it is possible to find a simplified

solution to the TPBVP , and that this may be of considerably less complexity

than the Kalman filter. Another approach has been presented where only the

gain of the reduced order fi l ter is optimally selected , the other parameters

having been selected a priori , either by means of a single stage optimization

procedure as in the example problem , or by some other method. The motivation

~ 

- -  -- —-—.-- - ~~~-
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behin d this app roac h was tha t a l i near TPBVP resul ted , which could be solved

with a predictable amount of calculation. The reduce d order f i l ters descr ib ed

in this paper are suited to those situations where it is important to reduce

the number of on line calcula tions . The fi l ter gains would ordinarily be

precomputed and stored for use in filtering the data . 

-- - - - .  
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ABSTRACT

The linear reduced order filtering problem is formulated as a matrix
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both the dynamic and observation models. Cases arc presented in which the

two-point boundary-value problem simplifies.
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INTR O DUCT I~1r~

Nany systems are more realistically modeled as having multiplicative

noise instead of additive noise. One example occurs in the momentum exchange

method for regulating the angular procession of a rotating space craft [1].

There is a disturbance which depends on the procession rates. Another example

occurs in the design of phase lock loops . The phase instability of an oscil-

la to r descri bed i n rectan gu l a r  coor di nates appears as wh i te , state dependent

noise [2]. Multip licative noise also appears naturally in system identifica-

tion problems [3]. Because such problems are of considerable importance , there

has been much research dealing with the topic of filtering and control for

systems with state dependent noise fl-5].

If the order of the system is large , the design of a corresponding

filter of large dimension is o ften problematic from the viewpoint of on-line

computation. Consequently there have been many papers written in the area of

reduced order fi l ter design [5-9]. In situations where one is only interested

in estimating a l ower order linear transformation of the state vector , it is

reasonable to attempt to do this with a filter of reduced order. The para-

meters of the f i l ter may t hen be selec ted usin g fi xe d conf ig urat i on o p tim i za-

tion methods [8-13]. The structure of such a filter may then be suboptimal ,

but the parameters are chosen optimally, subject to the structural constraints.

In this pa per we cons id er a di scr ete vers i on o f the work p resen ted i n

[5], where a continuous time problem was formulated as a two-point boundary-

value problem (TPBVP). The discrete problem is quite different from the

con ti nuous ti me pro b lem , since some of the filter variables to be optimized
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appear quadratically in the discrete p 4013c m and on l y lir -irl y in the continu-

ous time problem . The problem considered her~ is similar t ~~at considered

in [13], however in [1] only a single stage optimization was performed , and

an observer structure was required . Here the oaf rix m i ’ i i ’ u r  principle [14]

is used and optimization is performed over an ju t ‘ .~~l. The ct~~erve~ utructure

is not required a-priori , as we allow a driving ter r ,  j r  t ?e filter to remove

any a-priori bias. Cases are presented where the TPBVP si ni p l i 4 es considerably.

In one case only a single-point boundary-value problem must oe solved. In

another case, a linear TPBVP is obtained which can be solved either by direct

usc of linear systems theory or by a Riccati equation techni que.

PROBLEM STATEMENT

A stochastic process is considered which is modeled by a discrete

equation with state dependent noise

x (j + 1) =A (j) x (j) + w (i) 
~i~ 1 

Xi (i) r~ (j) 0(i) (1)

w here x (j) is the s tate vec to r at sta ge j, an d w (j) and n(j) are zero mean

whi te noise vectors . The term x1 (j) is defined as

~ 
(j) 

~~ 
(j) — 

~~ 
( i ) = x (j) — E{x~ (j)} (2)

The observa tion mo del i s of the form

y (j + 1) = C (j + 1) x (j + 1) +v (j + 1) +~~~~~X~ Li) N1 (i)n(i) (3)

where v (j + 1) is zero mean additive white measurement noise. We note that

measurements of the fo rm

y (j + i) C (i + 1) x Li + 1) +v Li +1) +
1~ 1~~ 

(j + 1) M~ (j +1) u (j + 1) (4) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -~~~~
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w here~ is zero mean white noise can be put in the required form (3), if r~ and

N
~ 

are properly defined , and if it is also true that when x. (j + 1) multiples

a non-zero term in the summation of (4), then its dynamical representation (1)

contains no noisy term . The covariance matrices for w (j), v (j), and q (j) are

Etw (i)w T(k)} = 
~~~~~~ ~kj

E{v Li) vT(k) = R Li) 
~jk 

(5)

E~n (j) ~
T(k)l = 

~~ ik

These terms are not correlated with each other or with the initial condition

x0. The known sta ti sti cs of the i ni ti al con d i tion are

E{ x (o)} =

(6)

Var{ x (o)} = P0

In the problem considered , a l ower order linear transformation of the state

vec tor is consi de re d

z (j) = N (j) X (j) ( 7)

The dimensions of z(j), x (j), an d y (j) are ;- , n , and m respectively, wher e

~~
< Ti.

Since z (j) is of l ower dimension than x(j), we consi der es ti mati ng i t

with a redu ced or der f i l ter o f the form

i (j+1 )=F(j)~~(j)+K (j)y(j+1)+g(j) (8)

One objective of the problem is to select g (j) and ~ (o) to satisfy a require-

ment that the estimate be unbi ased , i.e.

L.. - .-- ~~~
. - -  
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E ( e (j ) }  E { z ( j ) - 2 ( j ) }  0; ~~_ _ i > n  (9)

We note that the expectations are prior expectations and we are not requirin g

that the estimate be conditionall y unbiased , which is a much stronger require-

ment. The matrices F (j) and K (j) are then selected to minimize a quadratic

performance measure

N~.1 I T3 = E e (j) U(i) e (j) +e (N*) Se (N*) } (10)
3 0

The solution to the unbiased requirement is obtained by considering the error

difference equation. The solution to the optimization problem is solved using

the matrix minimum principle.

THE UNBI~,SF0 REQ~.RREMENT

The error difference equation can be shown to be

e(j+1) G(j) x(j)+ F(j) e(j) + D(j) w(j) - K(j) v( i+1 )-g(j)

fl n (11)
+ D(j)~ i~~. (j) I~ (j) rl (j) - K (j)~. 

~~~
. (j) M. (j) n (j)

1=1 1 1 1=1 1 1

where we have defined the matrices

G(j) = [N (j+1)- K(j) C (j+1)] A( j)-F(j) N(j) (12)

and

D(i )= N (j+1)- K(j) C(j+1) (13)

From (11) it is clear that if g (j) is selected as

g (j) = G (j) (i) (14)

and if
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z (o) = N ~~ 0c 
( 15)

then

E fe ( i)}  = o ~ j >o (16)

With g (j) selected according to (14), the error difference equation n~~y be

written as

e(j+i )= G(j)x(j) + F(j) e(j) + D (j) w(j) - K(j) v(j +1 )

n (17)
+ ‘ ~~~

. Li) B. (j) f l (~~)
1=1 1 1

where

B~ (j) ~ D (j) r .~ (~~
) — K ( i )  M

~ 
(j) (18)

and

x ( j )  = x (j) - ~ (i) x (j) - E{x (j)} (19)

to be consistent with (2). It is clear that ~ (j) is a zero mean process

sa t i s fyi n g

n
x (j + 1 ) = A Ci ) x ( j )  + w (j) + ~ x . (~~) r .  (j) f l ( s )  (20)

i=1 1 1

In or der to solve the rem a i n i ng pro b lem , i t is necessary to sel ect K (j)

and F (j) to minimize U as indicated by (10) subject to the constraints

imposed by (17) and (20). 

-
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THE OPTIMIZA T ION PROBLEM

The performance measure (10) may be written in terms of the error

variance matrix as
*

N -i *
U = tr~ ?~ 

U(j) ‘Dec~~ 
+ ~ ~ee (N )I (21)

3=0

where

P ( j) ~ E {e (j) e
T (j)} (22)

It is possible to set up the optimization proble m completely within a

det erm i n i sti c framework i f one can f i nd a set of equat i ons des~ribing the

pro paga t ion  of 
~ee~ 

We f i rs t define the ma tr i ces

= 
~~x 

(i)~ 
E{~~( i )  eT (j)l (23)

and

P
~~

(j)AE f

_

(i )  
T (i) (24)

Then from Equations (17) and (20) it can be seen that the above matrices

sat i sf y the equa ti ons

p (j + 1) = F (j) P (j) FT ( i )  + G Ci ) P (j) GT (~~) ± G Ci)  P (j) FT ~~cc cc xx x c

+ F ( j) 
~~~~~ 

GT (j) + D ( j) Q ( j) D T (j) + K(j) R(j + 1 ) KT (j)

+ 0(j) ~ (j) D
T 

(j )  + K (j) ~ (i) 
KT (j) - K (j~ ~2 ~~ 

0T ~~

- 0 (j) w~ (j) K
T 
~~ 

(25)
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+ 1 ) = A Ci ) P~~(j) GT (j )  + A 
~~ ~~~~~ 

FT Ci ) + Q ~~ 0
T 
~~

(26)

+ ~~~
( i )  0T ~~ 

- (i) KT ( i )

and

~~~~ + 1) = A Ci ) P ~~ AT (j) + Q Ci ) + 
~ (j) (27)

where we have use d the def i n iti ons

~ r . (
~~) ~(j) “

T
(~ ) P . Ci) (28)

i , k=1 xX lk

~ 
(j) A 

~~ M. (j) ~(i) M~ (i) P Ci ) (29)
i , k=1 1 XX

1k

and

n

~
‘2 Ci )  A ~ M

~ Ci ) (i) F~~ (j) P
XX Li) (30)

i , k=i 1

The initial conditions for (25), (26), and (27) are

‘D~~ (o) = P0
(31)

~xe ~~ = P
~ 

N~ ; P (o) = N0 P
~ 

N~

The problem may be stated using only deterministic equations. It is desired

to choose K (i) and F (j) to minimize U as indicated by (21) subject to the

constraints imposed by (25), (26), and (27). Actually 
~~~~~~~~~~~~~ 

may be pre-

computed and considered a known sequence of matrices . The remaining part

of the problem is solved using the matrix min imum principle. The Hamiltonian

is of the form 

~~~~~-~~~~~~~~~~ -.- -~ --- ~~~~~~~~~ .~~~~~~~~ — - --—-- - ~~~~~~~~~~~~
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H~ = tr {U (j) 
~~~~~ 

+ P (j+1) e (~~~
1) + Pex (J+ 1)t ’

~~x
(
~~

f1)

(32)

+ Pxe (j+1 )A
~ e (J+ 1)}

where Ace and Axe are Lagrange multiplier matrices , and A ex is the trans-

pose of Axe S The costate equations can be found from (32), after substitut-

ing from (25), (26), and (27).

A cc ~~~ ~~~ j7 
= U( j) + FT Ci)  Ace Ci + 1) F (j) (33)

A 
~~~~ 

~~~~~ = GT (j)A ee (i± i) F (j)+A T (i)A x e (j+i ) F (s)
x c (34)

The terminal conditions for (33) and (34) are

(N* ) = Scc (35)

‘xe 
~ *) = 0

A necessary condition for optimality of the filter gain can be found by setting

the gradient of the Ham iltonian with respect to K equal to zero . The result-

ing expression is

\
ee +1~~~~ j+ 1) 

~~~~~~~ 
CT (i+ 1) + F(j)[Pex (j) - N ( j) P~~ (j)]

~A
T (i) CT (i+ 1) C j+1 ) Cj)} ex Ci+ 1) xx (j+1) CT Cj+1 )

+ 4 ( i) }  = Aee (j+i ) K(j){C(j+ i ) P~~ (j+1) CT (j+l) + R(j+ 1)

+ ‘
~1 
(j) + 

~2 
(i) CT (~ 

+ 1) + C (j + 1) ~~ (j) } (36)

Similarl y, differentiating H~ with respect to F C_ i ) and setting the result

equal to zero gives the equa tion 

—— .-~~~~- -~~~~~~~~~~~~ _ - ~~~~~~~ -- -~~~_-~~ --_ - - _
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A 
~ 

1) F (j) [ P  ~~ 
- ‘Dc ~~ NT C i )  - N (j) P (j) + N (.1) ‘Dxx (.1 )

.N T (.1)] = [A (i + 1) + ‘ce ~ + 1) (N H 1)- K (i) C (I + 1 ) )  A H )

[P~~ (i) N
T 
(fl - 

~xe ~~~ ( 37)

We have presented the TPBVP giving the necessary equations for an optimium

c ho i ce of K an d F, the reduced order filter design matrices. In general the

TPBVP will be rather difficult to solve. There are t-~o cases we shall cons id er

i n wh i ch the p ro b lem s i mp l i f i es cons ide ra b ly an d may be solve d w it h a reason-

able amount of effort. In the first case the TPBVP simplifies into a single

poin t boun dary v a l u e  p ro b lem . In the secon d case , the problem is really mod-

ified so that F is selected prior to optimization and only K is optimally

selected . The resultin g TPBVP i s there fore l i near and can be solv ed by wel l

known procedures .

SIMPL IFCATION

In the first case we assume that it is possible to choose F (i) in such

a way tha t

G(j) = N (i+ 1 ) A (j) - K(j) C(j+1) A(j) - F(j) N (j) = o (38)

Then from (34) and (35) we can see that 
~ 

Ci ) is zero. If it is also true

that

~(i) ~~ee(~
) - 

~ex ~~ NT ( i )  (39)

is zero , then (37) simplifies to
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Aee (J+ i) F(j) N (j) [P~~
(j) NT (i) - ‘Dxe~~~~

1 = Aee (~~+1)
(4 0)

[N (j +1) - K ( j)  C (j + 1)] A (i) 
~~~ ~~ N

T ( j)  - ‘Dxc ~~~

Thus (38) is sufficient to insure that (37) is satisfied under the indicated

conditions. We must investigate the requirement that c~ Ci ) is zero , and see

what the impl ications are . Using (25) and (26) ,  a difference equation for

c~(j ÷1) may be derived , i .e.

F(j) 0(j) FT (j) + [K(j) C (j+1) IQ(j) +~~(i)} CT (j+l)

+ K(j) IR (j+i) + ~1 (j)} 
- N(j+ 1) ~Q(j) +~~(i)}C

T (i+ 1)

- F(j) ‘Dex (~
) AT (j) cT (i ± l) - NCi+1 )4 (i ) (41)

+ K(j){~~2 (j) CT (j+1) + C(j+1) 4(j)}]KT (j)

We will show that the bracketed term that multiplies KT (j) in (41) is zero

w hen K i s selec ted o pti mally.

If G (i) is zero and A ce (j + 1) is nonsingular , then Equa tion (36)

become s

K(i)[C(j+i )P~~ (j+1) CT (j+ 1 )+R (i + 1 )+~~1 ( i ) +~~2 (i) CT (i+1)

+ C (i+1 ) ~~ (i)] = [N (i+1)P
~~~

Cj +i )+ F(j) ‘Dex~~~ 
AT (j) ] C T (j+1)

+ N (~~+1) ~~
(j) - [N(j+1) - K (i) C(j+1)] A (j) P

~~
( i )  AT ( i)

CT (i+ 1) (42)

where we have substituted for F Ci ) N Ci ) from (38) in the last equation. If

we further substitute from (27), replacing 
~x x (i + 1) , we obta in

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
~~~~

- . -
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K (j )  [C Ci + 1 ) 
~Q Ci ) 

+ ‘~(i)} C
T (i + 1) + R (j ± 1) + 

~~ 
Ci) + 

~2 
Ci ) CT ( i  + 1)

+ C (j+1)~~~ (i)] FLi ) pex (j) A T ( i ) CT Cj+ 1)~~~~(i+fl [~~~Cj)

T 
(43)

+ Q (i) I CT (i + 1) ± 
~2 

( i) ]

Equation (43) is sufficient to show that (41) may be written as

= F (j)o(j) FT (i) (44) —

whenever K(j) is selected optima lly. Since ~(o) is zero
, (44) im plies that

oCi ) = oV - j >o. We have therefore developed alternative equations for selecting

K ( j)  an d F ( j) ,  i.e. (38) an d (43). Furthermore these equat i ons do no t i nv o lve

the Lagran ge multipliers so that we no longer have a TPBVP. If we define

~1Ci)~~C Cj + 1 )  { Q ( i )  + P(i)}CT (i+ 1) + R(j+1) + ~1(i) +

(45)

~ ~
‘2 ~

and

~2 Ci ) ~ ~~2 
Ci ) + C Ci + 1) { ~(j) + Q C j ) } ]  NT Ci + 1) (46)

then (38) and (43) can be written as

AT Ci ) CT C i + 1 ) N
T ( i )  KT CJ ) AT (j) NT (j±1)

(47)
- 

or equivalently

KT ( j) 1
L Ci ) I uCi ) (48)

FT (i) ]
where L Ci ) and vCj) are defined as the corresponding matrices in (48). A

necessary an d sufficient condition for (48) to have a solution is that 

—-
— - 

~~~~~~~~~~- - - - 
~~
-- -_. - 

~~~~_ . . - -
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L(j) L~
’(j) v(j) = vCj) (49)

where L ”
~
’C j) is the pseudo inverse of L’~ j). If a solution exists it is of the

form

[K Ci): F(i)] = [L~~j) v(j)] 
T 

+ r* [~ 
- L~~j) L Ci)]

T 
(50)

*
where r is an arbitrary matrix.

Since i t is clearly possible that we might not be able to solve (48), and

more generall y, we might not be able to solve the TPBVP specified in the pre-

vious sec tion , it seems appropriate to investigate a suboptima l approach. We

-therefore investigate a partial solution where F Ci ) is selected a priori , and

onl y KCi ) is optimized .

SOLUTIONS WITH SPECIFIC FC i )

Selectin g F (j) a priori has an important consequence , i .e. the TPBVP to

be solved in optimizing K(j) is linear. There are a number of approaches

availa ble for solving linear TPBVP’s , so that one can solve for an optimal

fil ter gain with a reasonable amount of off line calculation. Performance will

of course be suboptima l because F(j) is not optimized , however the loss i n

performance can be kept small by se lecting F (j )  in some way which relates to

performance but does not require sol”ing a TPBVP . A procedure similar to that

indicated in [8] can be used to select F Ci) where only sing le stage opt imiza tion

was considered.

From Equat ion (33) it is clear that with F Ci ) selected a priori , ‘ce may

be regarded as a known quantity , just as ‘Dxx is known . Wi th Ace known and non-

sin gular , one may solve for K(i) usin g Equation (36). The resultin g expression

is

_ —
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+ {N (i + 1) ‘Dxx ~ 
+ 1) + F (fl [P C i )  

- N Ci) 
~~ 

Ci)] AT Ci )~ C
T 

( i  + 1)]

* (51 )
.M Ci~~1)

where

M
* Ci + 1) = [R Ci + 1) + ~~ Ci ) + C i )  C

T 
Ci + 1) + C (j + 1) 

~~ Ci )

+ C (j + 1) P Ci + i) CT Ci + i)] -1 (52)

If we substitute frcm (51) in Equations (26) and (24), we obtain the equations

‘D (j+i) = [I - {P
~~

C j +1 ) cT i+ l ) +4 i ) I  M (j+1) C(i+1 ) ]

.A(j) Pxe C
~
) FT (i) - [P

~~ Ci +1) CT (i+ 1) +~~~(j)] M~~(i+ 1) [~~2 (i)

+ C Ci + 1) 
~~ 

Ci + 1)] A xe Ci + 1) ‘
~~~~~~ 

(j + 1) + 
~ 

Ci ) (53)

and

A xe Ci) = AT Ci ) [I - CT (i+l) M* (i+ 1){~~2 (j) + C(j+1) Pxx (~~
+ 1)}]

~~~~~~ 
F~~~ - A

T
~~~~~ C

T (j + 1) M (~~~~ C(i+ 1) A (j) ‘D xe~~~ 
FT ( i )

A Ci + 1) F ‘~j) + 
~~2 

(j )  (54)

where p
1 
Ci ) and p2 (j) are defined as

~~~~~~~~~~~~ 
NT ( i+ l)  - A C i ) ‘DXX ~~~~~~~~ 

NT (i) FT (i) -[P~~ (j+1)

.CT (i+1) +~~
T
(i)] M* (i+l ) [{C(i + 1) ’D (j+1) +~~~(j)}

.N T Ci + 1) - C Ci + 1) A Ci ) ‘D xx Ci) N
T Ci ) FT Ci)] C 55) 

_.-.—~~~~~~~~~~~~~~ -. -..-— ---- - . ~~~~~~~~~~~~~~~~~~~~~ . .
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and

= [N (j+i) A(j) - F(j) N(j)]T A ( j+1 ) F (j) - AT (j)

.c T (j +l) M* (i± 1)[~ C(i+1 ) 
~~~~~~~ 

+ 
~2 (j) I N

T (i+l) - C(j+1 )

. A ( j )  P C i )  N
T

( i )  F
T ( i ) ]  Aee C i + 1 ) F(j) (56)

The boundary conditions for (53) and C54) are given by (31) and (35) respec-

tively. Since (53) and (54) are linear in P and there are many ways

to solve the TPBVP . On e approach i s to assume a l i n e a r  rel a t i ons hip between

the elements of ‘Dxc and A xe S We may put the distinct elements of Axe in a

lon g vector A~~, and similarly form ‘Dxc from the distinct elements of ‘D xe • If

we then assume the rela ti o n s h i p

* * *
~ Ci)  = V (j) p Ci) + B* ( i )  (57)xc xc

then recursive equations may be obtained for V * (i) and 6* ( j )  and the problem

is transformed into a single point boundary value problem . We will illustrate

the procedure with a specific example where it is not necessary to put the

distinct elements of ‘D xc and A xe in a vector form .

It is assumed that the matrices of (23) are selected to be of a scalar

form , i.e.

FCi ) f(j) I
(58)

Ace Ci ) = A ce Ci ) I

where f and Xee are scalars ; the terminal matrix s must be of the same form.

We may then reposition A ce an d F in (53) and (54) and obtain equations of the

form

+1) = m 11 Cj) ‘D xe~~~ ~ ~~~~~ 
A xe C j+i ) + p1 (.j) C59)

_ 
_ _
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~xe ~~ ~ i ~~ ‘Dxc ~~ ‘22 w ~xe 
Ci + 1) + 2 Ci~ 

(60)

where

~~ (i) ~f (~~ 
[I - 

~~~ 
Ci + 1) CT Ci + 1) + 

~~ Ci ) M* (j + 1) C (j + 1)] A Ci )

a12
(j)A ~~~~

1 (j+ 1) [P
~~

(j+1) CT Cj+ 1) + ~~(j)] M
* (j+1) [~2 (i)

+ C Li + 1) P Ci + 1)] (61)
Xx

~21 ~~ 
~ f2 (i) A (~ + 1) AT (j )  CT (j + 1) N (j + 1) C Ci + 1) A Ci )

a22 (j f(j) AT (j) [I - CT (i+ 1) M* Ci + 1)(~~2 (i) + C (j+1 )P
~~ (i+ 1)}]

A linear rela tionship between ‘Dxc and Axe is assume d , i .e.

A Ci ) = V Ci ) ‘Dxc Ci ) + ~ Ci ) (62)

Substitu ting (62) in (59) and (60) gives

‘D xc Li + 1) = c~~ ~~ ‘D Xc Cfl + ~~~~ v (i + I) P Li + 1) 
~~ 12 (j) ~ (i 

+ 1)

+ o1
(i) (63)

V Ci ) P ~
j) + ~(i) ~21 

Ci ) ‘D xc Ci ) 
+ ‘22 ( i )  V Ci + 1) ‘Dxc Ci + 1)

+ 
~22 ~~ 

6(j + 1) + p2 Ci ) (64)

Solvin g for ‘Dxc (j + 1) in (63), an d su bst it u ti ng th at r e su l t  in  C64) gives

V (fl 
~xe 

(j) + PCi) = m21 (fl 
P ( j)  + ~22 (i) 6Ci 

+ 1) + p2 (i

+ m22 (J) V (j+1) [I - 

~12 Cj) V (j+ 1)] -1 [m
11
(j) P ( j) +

.6(j+1) + p 1 Ci )] 
(65)

--- _

~

-~
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If the above is to hold for arbitrary F , t h e n  we must have
xc

V Ci ) = t 21 Ci ) + 122 Ci ) V ( j  + 1) [I - 
~12 

Ci ) V Ci + 1)~ 
~~ Ci ) (66)

and

~ Ci ) = “22 w [I + V Ci + 1) (I - 

~12 ~~ 
V Ci + i ) )~~ “l2~~~~ 

6(i~ 1)

+ p2 Ci) + 
~22 

Ci ) V (i + 1) (I - 11 12 (j) V (j + 1)~~
1p

1 
Ci) (67)

• The terminal conditions for the above are

V(N *) = 0; ~ (N *) 0 (68)

We may thus compute V and ~ backward in time so that ‘xe is known in terms of

‘Dxe~ 
The gain may then be calculated forward in time using Equati on (51) and

solv ing for ‘D xc from (59).

In this section we consider a simplified model of a discr ctIzed inertial

system as considered in [8]. The dynamics are modeled as

I ~
x (j+1 ) = x (j) + w (j) (69)

0 1

where A is .2 and the observation mode l is

y(j+1) = [1 + 6(j+ 1), o J x( j+1 ) + v(j+1) (70)

where c Ci ) represen ts a sequence of in dependen t random va ri ables such that

‘Dr [ c(i) = 1 ] =
(71)

Pr [ E (i )  = - 1] ‘

and ~ then is the probab ilty that there will be no signal measured at a given

stage . If we define n(j) as Ci + 1) then C70) may he written as

~ 

-.
~~~---• --~~~~~~-

-- . -
~~~ .--_ _• - - - - ~~~~~~~~~~~--
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y Ci + 1) [1, 0]  ~ (j + 1) + V Cj + 1) + [x Li) + A X2 C i) ]  rl C j ) (72)

where it has been assumed that w 1 (j) is zero . Equation (72) is of the sa me

form as (3). The initial conditions for the example have mean value zero and

the initial variance matrix is the identity matrix. The variance of the

measu rement no i se i s R = .1, and the variance of the plant noise parameter ,

w2 (j) is 1. It is desired to estimate x 1 using a first order filter of the

form

z Ci + 1) F Ci ) z Ci ) + K Ci ) y (j + 1) (73 )

There is no driving term , 9(j), since p (j) is zero . The parameter F(j) is

not selected optimally, but selected using a one stage optimization procedure

as indicated in [8]. The parameter KC i ) is then selected by solving a linear

TPBVP as suggested in this paper. Optimization is with respect to the perfor-

mance measure

N* _ 1
U = E~ ~~I 

e2 Ci) + e2 (N*)} (74)
i=o

In F igure 1, the performance of the reduced order fi l ter , designed to accoun t

for the probability that there will be no signal present at a given stage , is

compared with that of a second order Ka l man fi l ter designed using the assump-

tion that the parameter mu ltip lyin q x 1 Ci + 1) in (70) is at its mean value a’

unity .

SUMMARY AND CONCLUSIONS

In this paper we have investigated the discrete reduced ~~ ‘ ~ 
- -

problem for systems with state dependent noise. ~h q~~r r~

to be a nonlinear matrix TPBVP , however ~~i” resul he

- 
- -
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[
complicated under certain circumstances , result ing in an initi al value prob lem.

Simplification also results when some of the filter parameters are selected

optimally and the others are chosen a priori . In this case a linear TPBVP

results , which can be solved by standard procedures . Because systems with

state dependent noise occur frequently, we feel that it is i mportant to con-

sider the reduced order filtering problem for such systems . As indicated by

the example problem , such models can represent intermittent observation data

as well as a number of other situations . The reduced order fi l ters described

in this paper are suited to those situations where it is important to reduce

the number of on line calculations , and the gains may be precomputed and

stored for use in the filtering process.
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OPTIMA L TRACKING
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MARKOV JUMP PROCESS*
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Abstract

quadratic performance measure. Both inputs to the system and the reference vector ,
A feedback control is obtained for a linear random tracki ng problem with a

which is to be tracked , are capable of instantaneo us change.

INTRODUCTION Markov jump processes. We apply similar methodology

TracKing problems are an important category of to solve the random tracking problem in this paper.

control problems where the output of a system is PROBLEM STATEMENT
required to follow a reference vector. Such prob- Consider a system described by the linear differ-
lems have been extensively treated in the litera- ential equation
ture [1), [2]. In this paper , we consider this

class of problems within a format which allows the x (t) = Ax(t) + Bu (t) + ‘r ( t ) ( 1 )

reference vector to change values suddenly. Thus where y(t) is a random input vector. The output

the System may be tracking one vector , and sudden- equation is also lirear

ly it is required to track another vector. For y(t) Cx(~ ) (2)

added generality, we also allow for the possibil- - The control vector , u(t), is to be selected to

Ity of system inputs which can change instant ly, minimize a quadratic performance measure

It Is assumed that the input and reference vectors ~ 2 cif L
[Y (T) - ~(1)]TQ[y(1) -

may change instantly and randorly in time , so that 
+ uT(r) Ru(r)]dlIx (t) . r(t)} (3)

the problem is a stochastic control problem. The In (3), -
~(i) is the random vector to be tracked ,

elements o1 these vectors are modeled as Markov
jump processes with a finite numbr ’r of states [3]. 

and r (t) is an indicator function which indicates

the values of ir (t) and y(t). The Stochastic
Sworder introduced a method for solving related vectors , y(t) and ‘(t),are Markov jump processes
stochastic control problems In [4), where the

described using the transition probabilities
parameters of a linear system were modeled as

*This research was supported in p~irt h~ the A~r 
1+’), y(t4A) n~. ~ 

ii(t) , y(t) = n~, ~~
Force Office of Scientific Research . un ler Grant + o(~) , I / j
No. AFOSR-77-3248. 1 + q. .A + O(t~) I j ( 4 )

for i ~j = l , 2 s
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lhu~ wi are design ing a control to track a si gnal or, substituting from (1),
Is capable of instantaneous change , and are 

= (~ + PA + PBK)X + PB1~ + Py + (14)
also subject to instantaneous input disturbances. If (11) and (14) are equated , and we substitute
The contro ller at all times has perfect informa- for A from (9), then two equations are obtained :
t i on, r(t), which indicates the current values of

p + PA + P8K = _CTQC — KTRK - (A+BK)TP ( 15)the signal to be tracked and the Input disturban-
ces. Using not ation corresponding to that of CTQn - KTRB - (A+BK)Tcx = PB1~ + Py + (16)

Sworder [4], we denote the event These equations are required if (11) and (14) are
to be equivalent for arbitrary x.(n(t) , y(t) = r i . ,  y J — s — r ( t )  [i] (5)

1 1

Note that there are only a finite number of pos- From (15) we calculate ECP(t)Ir (t)c[j]}. The re-

sIble values which can be assumed by n and y. From suiting expression is

the definition (4) it is clear that E{P(t)Ir(t)c[j]) -P~ (t )A - ATP~(t) - CTQC

~~ 
q~ = 0 (6) +P.(t) BR 1B1P3(t) (17)

1=1 where we have defined

and we will make use of this fact in the develop- P.(t) A E(P(tflr(t)c[j]} (18)
.3 —

ment of the opti m al controller , and used the fact that

THE OPTIMAL SOLUTION E{K(tflr(t)c[j]) = _R i BTP~ ( t ) (19)
To obtain the solution we follow steps similar to The left hand side of (17) can be calculated a
those used in [4). The Hamiltonion for this different way as
problem is

I T E{P(tflr(t)r[j]}
H (x ,u) = ~~- (Cx_ ~)

TQ (Cx_~) + 
~
-u Ru

= lim E~Pk 1rktJ~[jj1_-_ElP (t )Jr (t )~
[j])

+ Bu + y) (7) A*O
where A is a stochastic Lagrange Multiplier. it (20)
Is necessary to minimize E{H [x(t), u (t)]~x(t), Using (4), we then obtain

5r(t)} wi th respect to the contorl , u. This leads E P(t)Ir(t)c[j]} = ~ 
q~ P.(t) + P~(t) (21)

to the equation i=l
Hence combining (17) and (21), there results

u[x(t), r(t)] = -R~~B
TE{A (t)Ix(t) , r(t)} (8) ,

q. P. -P A - ATP - cTQC + P BR ”l BTP.It is convenient to assume a linear form for \ P,~ + > j~ 1 3 3
A C t) = P(t) x(t) + o(t) (9) 1=1 (22)

so that u(.) can be written as Notin g that (22) gives the same expression for all

u[x(t), r(t)] _R _ 1
BT [E{P(t)Ir (t)) x(t) and using (6), we have

+E{a(t)Ir(t)}]A K(t) x(t) + 13(t) (10) P = ~ -PA - ATP — CTQC + pBR
.
~B

Tp (23)
Substituting for u in (7) and differentiating with j=l ,2,. ..
respect to.x , we obtain the differen tial equation

Equation (23) is fortunate , since it indicates
for A , that it is only be necessary to solve one Riccati

+ ~
TR~)X + CTtlq - 1(

TRB - (A+BK)TA equation and not s coupled Riccati equations.A -

(11)
Using equation (16), we calculateE (~i(t)Ir (t)c[j}},which has terminal condition ,
o bta in i no

~(T) 0 (12)
Another expression for ~ is found usin g (9), i.e. 

[{
~ (t)I r(t)c[i]} CTQn~ ~ATcxj(t) -P (t)’r~

~(t )  P( t) x ( t) ~ P( t ) ~(t) + ~(t) (13) 
+ P (t )BR~ BT m~(t) (24)

. --- . -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .



..

~~~~~

_ .

~~~~~~~~~~~~~~~~~

— ---—--

~~~~~ 

‘

— 
P~ep~int 6’mom Paoeeed-~ng~s o~ Eteventh AnnuaL Aaiioma,m

Con~ e) me,ire on6 CLkcLL~ t~, Sqstgma , and Corn i te~’ca
Nov. 1- 9 , 197 1 , Pac-~~~ ( “move , Cat. okn- a

where we have defined the vector correspondin o to ~2) we have the dec ienerate

a~(t) Is E{ci(t)Ir (tk[j)} (25) Riccati solutions , 
__________

and noted that P1 = 1 = P = P2 
= ~ [v~+ 4(q+1) -q] ~~~

E{8(t)Ir(t)c[j]} = _R~~B
Tctj (26) where we have assumed that if r(t)c[11 , it

means y (tl = 0, and r(t)r[2~ means y(t) y~. We
Proceeding as in obtaining (21), we find another

I have corresponding equations for and 02expression , 5
E{~ (t)~ r ( t )c [ j ]}  = q.. cx. (t) + & . ( t )  (27)

.3 1 1 01 
= 0 (34)

Combining (24) and (27), we then find 
~~~~~

. 
~~~~

+(
~~ 

+q)u~ 0 (35)
which gives

C~QrI~ - ATcx~ -P y
~ 

i- F’ BR~~B
To~ - ~~ 0

~ 
- (36)

j= i ,2 ,s (28) 
The optimal control is thus

Hence there are s vector equations to be solved
for the terms ~~~ and these are coupled through u [x (t), r(t)J = _ x (t) - y*/( 1+q) when r(t)r[2]

(37)
the parameters q. .. From (1?) it is clear that u[x (t), r(t)] = -x(t) when r(t)r[l)J1
the terminal conditions for (23) and (28) are Suppose that to begin with , r(t)c[2], then sub-

p (T) stitution of (37) in (31) gives
(29)

ct~(I) 
= 0 = -  x+ y*(.IL_) (38)

which describes the trajectory until y(t) switchesThe optima l control strategy , is thus found to be

u[x(t), r(t)] -R~~8
T[P (t)x(t) + ci~~(t ) ]  (30) 

to zero , at which time we beg in to have a decaying
exponential described by

when r(t)c[j] i -x (39)
where P (t)and c*~(t)are found by solving (23) and The results appear to be reasonable , although they
(28) respectively, are not intuit ive.

EXAMPLE
SUMMARY

We will consider a simple scalar example with an
In this paper we have applied the stochastic

input which can change suddenly. The dynamical

description is minimum princi p le to solve a random track ino pro-

x = u + y ( t )  (31 ) blem where the values to be tracked were capable
where y ( t )  has two probable s ta tes , y (t) y~ or of changing instantl y. In addit ion , input dis-
y ( t )  0. With y~ a transient state and 0 an

absorbing state, we have turbances have been modeled as Markov jump

Pr[y(~+Is) = y* Iy ( t )  = 0 ] = 0 feedback control was found which minimi zed a
(32)

Pr [y(t+A) = y*~y(t) = = 1 - qls processes which could suddenl y chan ge va lues.  A

Pr [y (t+Is ) = 0 y ( t )  = y~~J = q~ quadratic performa nce meas ure. The control law
Pr[y(t+ts) = 0 y(t) 0 1 1

where q > 0. The problem is an infinite horizon was found to be linear in the state vector and con-

problem, ta m ed an additional addit iv e term which changed
J E{ f  [x2 (i) u2 (i)]dt~x (t), r(t)} whenever the input disturbance or reference vector

t
Since we are looking for the steady s ta te  so lu t ion , changed. 
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